1.

Record Nr.

UNISA990000409170203316

Titolo

Annuario scolastico del novantennio 1897-1987 / a cura di Salvatore Martorana

Pubbl/distr/stampa

Noto : Liceo-ginnasio statale A. Di Rudini, 1988

Descrizione fisica

320 p. : 12 p. di tav. ; 24 cm

Disciplina

373.238

Soggetti

Di Rudinì; A. <Liceo-ginnasio statale, Noto> - Annuario - 1897-1987

Collocazione

373.238 ANN 1 (ISP VI III)

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910254065703321

Titolo

Stochastic analysis for Poisson point processes : Malliavin calculus, Wiener-Itô chaos expansions and stochastic geometry / / edited by Giovanni Peccati, Matthias Reitzner

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016

ISBN

3-319-05233-0

Edizione

[1st ed. 2016.]

Descrizione fisica

1 online resource (XV, 346 p. 2 illus. in color.)

Collana

Bocconi & Springer Series, Mathematics, Statistics, Finance and Economics, , 2039-1471 ; ; 7

Disciplina

519.2

Soggetti

Probabilities

Combinatorial analysis

Polytopes

Applied mathematics

Engineering mathematics

Probability Theory and Stochastic Processes

Combinatorics

Applications of Mathematics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa



Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references at the end of each chapters and index.

Nota di contenuto

1 Stochastic analysis for Poisson processes -- 2 Combinatorics of Poisson stochastic integrals with random integrands -- 3 Variational analysis of Poisson processes -- 4 Malliavin calculus for stochastic processes and random measures with independent increments -- 5 Introduction to stochastic geometry -- 6 The Malliavin-Stein method on the Poisson space -- 7 U-statistics in stochastic geometry -- 8 Poisson point process convergence and extreme values in stochastic geometry -- 9 U-statistics on the spherical Poisson space -- 10 Determinantal point processes.

Sommario/riassunto

Stochastic geometry is the branch of mathematics that studies geometric structures associated with random configurations, such as random graphs, tilings and mosaics. Due to its close ties with stereology and spatial statistics, the results in this area are relevant for a large number of important applications, e.g. to the mathematical modeling and statistical analysis of telecommunication networks, geostatistics and image analysis. In recent years – due mainly to the impetus of the authors and their collaborators – a powerful connection has been established between stochastic geometry and the Malliavin calculus of variations, which is a collection of probabilistic techniques based on the properties of infinite-dimensional differential operators. This has led in particular to the discovery of a large number of new quantitative limit theorems for high-dimensional geometric objects. This unique book presents an organic collection of authoritative surveys written by the principal actors in this rapidly evolving field, offering a rigorous yet lively presentation of its many facets.