1.

Record Nr.

UNINA990006371230403321

Autore

Dumond, Dwight Lowell

Titolo

A History of the United States / Dwight Lowell Dumond

Pubbl/distr/stampa

New York : Henry Holt and Company, 1942

Descrizione fisica

VIII,, 882 p. ; 24 cm

Disciplina

973

Locazione

FGBC

Collocazione

XXI C 602

V G 276

Lingua di pubblicazione

Non definito

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA990009353910403321

Autore

Istituto geografico militare

Titolo

Balsorano [Documento cartografico] / Istituto geografico militare

Pubbl/distr/stampa

Firenze : IGM, [1963]

Descrizione fisica

1 carta : color. ; 42 x 37 su foglio 61 x 49 cm

Collana

Carta d'Italia ; 152, quadrante 3, tavoletta NO

Locazione

ILFGE

Collocazione

MP Cass.2 152, 3(4)

Lingua di pubblicazione

Italiano

Formato

Materiale cartografico a stampa

Livello bibliografico

Monografia

Note generali

Il meridiano di riferimento รจ M. Mario, Roma

Rilievo fotogrammetrico del 1957



3.

Record Nr.

UNINA9910254062703321

Autore

Diverio Simone

Titolo

Hyperbolicity of Projective Hypersurfaces / / by Simone Diverio, Erwan Rousseau

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016

ISBN

3-319-32315-6

Edizione

[1st ed. 2016.]

Descrizione fisica

1 online resource (XIV, 89 p. 3 illus.)

Collana

IMPA Monographs ; ; 5

Disciplina

516.36

Soggetti

Geometry, Differential

Geometry, Algebraic

Functions of complex variables

Differential Geometry

Algebraic Geometry

Several Complex Variables and Analytic Spaces

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

- Introduction -- Kobayashi hyperbolicity: basic theory -- Algebraic hyperbolicity -- Jets spaces -- Hyperbolicity and negativity of the curvature -- Hyperbolicity of generic surfaces in projective 3-space -- Algebraic degeneracy for projective hypersurfaces.

Sommario/riassunto

This book presents recent advances on Kobayashi hyperbolicity in complex geometry, especially in connection with projective hypersurfaces. This is a very active field, not least because of the fascinating relations with complex algebraic and arithmetic geometry. Foundational works of Serge Lang and Paul A. Vojta, among others, resulted in precise conjectures regarding the interplay of these research fields (e.g. existence of Zariski dense entire curves should correspond to the (potential) density of rational points). Perhaps one of the conjectures which generated most activity in Kobayashi hyperbolicity theory is the one formed by Kobayashi himself in 1970 which predicts that a very general projective hypersurface of degree large enough does not contain any (non-constant) entire curves. Since the seminal work of Green and Griffiths in 1979, later refined by J.-P. Demailly, J. Noguchi,



Y.-T. Siu and others, it became clear that a possible general strategy to attack this problem was to look at particular algebraic differential equations (jet differentials) that every entire curve must satisfy. This has led to some several spectacular results. Describing the state of the art around this conjecture is the main goal of this work.