1.

Record Nr.

UNINA9910254062403321

Autore

Terras Audrey

Titolo

Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and Generalizations / / by Audrey Terras

Pubbl/distr/stampa

New York, NY : , : Springer New York : , : Imprint : Springer, , 2016

ISBN

1-4939-3408-2

Edizione

[2nd ed. 2016.]

Descrizione fisica

1 online resource (XV, 487 p. 41 illus., 21 illus. in color.)

Disciplina

515.2433

Soggetti

Harmonic analysis

Number theory

Geometry

Discrete mathematics

Mathematics

Statistics

Abstract Harmonic Analysis

Number Theory

Discrete Mathematics

Applications of Mathematics

Statistical Theory and Methods

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di contenuto

Intro -- Preface to the First Edition -- Preface to the Second Edition -- Contents -- List of Figures -- 1 The Space Pn of Positive nn Matrices -- 1.1 Geometry and Analysis on Pn -- 1.1.1 Introduction -- 1.1.2 Elementary Results -- 1.1.3 Geodesics and Arc Length -- 1.1.4 Measure and Integration on Pn -- 1.1.5 Differential Operators on Pn -- 1.1.6 A List of the Main Formulas Derived in Section 1.1 -- 1.1.7 An Application to Multivariate Statistics -- 1.2 Special Functions on Pn -- 1.2.1 Power and Gamma Functions -- 1.2.2 K-Bessel Functions -- 1.2.3 Spherical Functions -- 1.2.4 The Wishart Distribution -- 1.2.5 Richards' Extension of the Asymptotics of Spherical Functions for P3 to Pn for General n -- 1.3 Harmonic Analysis on Pn in Polar Coordinates -- 1.3.1 Properties of the Helgason-Fourier Transform on Pn -- 1.3.2



Beginning of the Discussion of Part (1) of Theorem 1.3.1-Steps 1 and 2 -- 1.3.3 End of the Discussion of Part (1) of Theorem 1.3.1-Steps 3 and 4 -- 1.3.4 Applications-Richards' Central Limit Theorem for K-Invariant Functions on Pn -- 1.3.5 Quantum Chaos and Random Matrix Theory -- 1.3.6 Other Directions in the Labyrinth -- 1.4 Fundamental Domains for Pn/GL(n,Z) -- 1.4.1 Introduction -- 1.4.2 Minkowski's Fundamental Domain -- 1.4.3 Grenier's Fundamental Domain -- Grenier's Reduction Algorithm -- 1.4.4 Integration over Fundamental Domains -- 1.5 Maass Forms for GL(n,Z) and Harmonic Analysis on Pn/GL(n,Z) -- 1.5.1 Analytic Continuation of Eisenstein Series by the Method of Inserting Larger Parabolic Subgroups -- 1.5.2 Hecke Operators and Analytic Continuation of L-Functions Associated with Maass Forms by the Method of Theta Functions -- 1.5.3 Fourier Expansions of Eisenstein Series -- Generalities on Fourier Expansions of Eisenstein Series -- Remarks on Maass Cusp Forms.

1.5.4 Update on Maass Cusp Forms for SL(3,Z) and L-Functions Plus Truncating Eisenstein Series -- Maass Cusp Forms for SL(3,Z) and L-Functions -- Langlands' Inner Product Formulas for Truncated Eisenstein Series -- 1.5.5 Remarks on Harmonic Analysis on the Fundamental Domain -- 1.5.6 Finite and Other Analogues -- 2 The General Noncompact Symmetric Space -- 2.1 Geometry and Analysis on G/K -- 2.1.1 Symmetric Spaces, Lie Groups, and Lie Algebras -- 2.1.2 Examples of Symmetric Spaces -- Plan for Construction of Noncompact Symmetric Spaces of Type III -- Type a Examples -- Type c Examples -- 2.1.3 Cartan, Iwasawa, and Polar Decompositions, Roots -- Three Examples  of Iwasawa Decompositions of Real Semisimple Lie Algebras -- Examples of the Polar Decomposition -- 2.1.4 Geodesics and the Weyl Group -- 2.1.5 Integral Formulas -- Examples -- Invariant Volume Elements on the Symmetric Spaces of GL(n,R) and Sp(n,R) -- 2.1.6 Invariant Differential Operators -- 2.1.7 Special Functions and Harmonic Analysis on Symmetric Spaces -- 2.1.8 An Example of a Symmetric Space of Type IV: The Quaternionic Upper Half 3-Space -- 2.2 Geometry and Analysis on "026E30F G/K -- 2.2.1 Fundamental Domains -- 2.2.2 Automorphic Forms -- Questions Arising from Proposition 2.2.3 -- 2.2.3 Trace Formulas -- Trace Formula for Discrete  Acting on the Quaternionic Upper Half Plane -- Trace Formula for Discrete  Acting on Hm -- Trace Formula for  Acting on the Siegel Upper Half Space -- References -- Index.

Sommario/riassunto

This text explores the geometry and analysis of higher rank analogues of the symmetric spaces introduced in volume one. To illuminate both the parallels and differences of the higher rank theory, the space of positive matrices is treated in a manner mirroring that of the upper-half space in volume one. This concrete example furnishes motivation for the general theory of noncompact symmetric spaces, which is outlined in the final chapter. The book emphasizes motivation and comprehensibility, concrete examples and explicit computations (by pen and paper, and by computer), history, and, above all, applications in mathematics, statistics, physics, and engineering. The second edition includes new sections on Donald St. P. Richards’s central limit theorem for O(n)-invariant random variables on the symmetric space of GL(n, R), on random  matrix theory, and on advances in the theory of automorphic forms on arithmetic groups.