| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990008489770403321 |
|
|
Autore |
Cappelletti, Mauro <1927-2004> |
|
|
Titolo |
La testimonianza della parte nel sistema dell'oralità : contributo alla teoria della utilizzazione probatoria del sapere delle parti nel processo civile |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Collana |
|
Università di Firenze, Fondazione Piero Calamandrei ; 3 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910251403003321 |
|
|
Autore |
Delcarmine Nadine |
|
|
Titolo |
L’avenir des bibliothèques : L’exemple des bibliothèques universitaires / / Florence Roche, Frédéric Saby |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Villeurbanne, : Presses de l’enssib, 2017 |
|
|
|
|
|
|
|
ISBN |
|
2-37546-086-3 |
2-8218-7839-7 |
|
|
|
|
|
|
|
|
Altri autori (Persone) |
|
EvansChristophe |
FernexAlain |
NguyenOdile |
RocheFlorence |
SabyFrédéric |
|
|
|
|
|
|
|
|
Soggetti |
|
Academic libraries - Administration |
Library science |
Library administration |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
L’évolution des bibliothèques est permanente ; du traitement des collections, sanctuarisées, protégées, le métier de bibliothécaire, après s’être emparé des technologies de l’information, est devenu plus technique ; il doit aujourd’hui se tourner vers un public plus exigeant, plus inconstant, aux attentes plus imprévisibles et plus diverses.Depuis le vote de la loi relative aux libertés et responsabilités des universités, dite loi LRU, en août 2007, et le passage aux responsabilités et compétences élargies (RCE), les missions, la place de la bibliothèque au sein de la communauté académique ne vont plus de soi. Cet ouvrage s’intéresse donc particulièrement aux bibliothèques universitaires ; il installe l’usager, le lecteur, l’étudiant au centre des réflexions ; il traite des usages des étudiants, du devenir des collections, du rôle des personnels, de la politique de services aux publics, des indicateurs appropriés et conclut par une vision prospective et stratégique de la |
|
|
|
|
|
|
|
|
|
|
|
|
|
bibliothèque.Au-delà des personnels des bibliothèques universitaires, cet essai s’adresse à tous les directeurs et professionnels, quel que soit le type d’établissement ; il nous interroge sur le devenir de nos professions et sur la plus-value apportée à la communauté nationale ; il intéressera à ce titre un lectorat plus large, soucieux de comprendre la place qu’occupe aujourd’hui la bibliothèque dans la construction du savoir. |
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9910842400303321 |
|
|
Autore |
Wu Peng |
|
|
Titolo |
Micro-Mesoporous Metallosilicates : Synthesis, Characterization, and Catalytic Applications |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Newark : , : John Wiley & Sons, Incorporated, , 2024 |
|
©2024 |
|
|
|
|
|
|
|
|
|
ISBN |
|
3-527-83938-0 |
3-527-83936-4 |
3-527-83937-2 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (493 pages) |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Synthesis of Titanosilicates -- 1.1 Introduction -- 1.2 Synthesis of Medium‐Pore Titanosilicates -- 1.2.1 TS‐1 Synthesis -- 1.2.2 Ti‐MWW Synthesis -- 1.2.3 TS‐2 Synthesis -- 1.2.4 Synthesis of Other Medium‐Pore Titanosilicates -- 1.3 Synthesis of Large‐Pore Titanosilicates -- 1.3.1 Ti‐Beta Synthesis -- 1.3.2 Ti‐MOR Synthesis -- 1.3.3 Ti‐MSE Synthesis -- 1.3.4 Synthesis of Other Large‐Pore Titanosilicates -- 1.4 Synthesis of Extra‐Large‐Pore Titanosilicates -- 1.5 Synthesis of Mesoporous Titanosilicates -- 1.6 Synthesis of ETSs -- 1.7 Conclusions -- References -- Chapter 2 Layered Heteroatom‐Containing Zeolites -- 2.1 Introduction -- 2.2 Traditional Layered Heteroatom‐Containing Zeolites -- 2.2.1 Heteroatom‐Containing MWW‐Type Layered Zeolites |
|
|
|
|
|
|
|
|
|
and Their Derivative Zeolitic Materials -- 2.2.2 Heteroatom‐Containing Layered Zeolites Built from fer‐Layers -- 2.3 Novel Layered Heteroatom‐Containing Zeolites -- 2.3.1 Heteroatom‐Containing MFI‐Type Layered Zeolites -- 2.3.2 Germanosilicate‐Derived Heteroatom‐Containing Zeolites -- 2.4 Conclusions -- Acknowledgments -- References -- Chapter 3 Synthesis and Catalytic Applications of Sn‐ and Zr‐Zeolites -- 3.1 Introduction -- 3.2 Synthesis of Sn‐ and Zr‐Zeolites -- 3.2.1 Bottom‐up Approaches -- 3.2.1.1 Hydrothermal Synthesis -- 3.2.1.2 Dry‐Gel Conversion Methods -- 3.2.1.3 Interzeolite Transformation -- 3.2.1.4 Structural Reconstruction Strategy -- 3.2.2 Top‐Down Approaches -- 3.2.2.1 Direct Metalation -- 3.2.2.2 Demetallation-Metalation -- 3.3 General Remarks -- 3.4 Catalytic Applications of Sn‐ and Zr‐Zeolites -- 3.4.1 Redox Catalysis -- 3.4.1.1 Baeyer-Villiger Oxidation -- 3.4.1.2 Meerwein-Ponndorf-Verley Redox -- 3.4.2 Lewis Acid Catalysis -- 3.4.2.1 Ring Opening of Epoxides -- 3.4.2.2 Aldol Reaction -- 3.4.2.3 Propane Dehydrogenation. |
3.4.3 Biomass Conversion -- 3.4.3.1 Sugar Isomerization -- 3.4.3.2 5‐(Hydroxymethyl)Furfural (HMF) Synthesis -- 3.4.3.3 Synthesis of Lactic Acid or Alkyl Lactates -- 3.4.3.4 γ‐Valerolactone Synthesis -- 3.5 General Remarks -- References -- Chapter 4 Synthesis of Germanosilicates -- 4.1 Introduction -- 4.1.1 General Property of Ge/Si Oxides -- 4.1.2 Germanosilicate Glass -- 4.2 Isomorphous Substitution in Germanosilicates -- 4.2.1 Isomorphous Substitution Si in Germanate -- 4.2.2 Isomorphous Substitution Ge in Silicates -- 4.3 Inorganic Structure‐Directing Effects -- 4.3.1 Structure‐Directing Effects of Ge -- 4.3.2 Structure‐Directing Effects of F− -- 4.4 Organic Structure‐Directing Agents in Germanosilicate Synthesis -- 4.4.1 Organic Structure‐Directing Agent Types and Revolutions -- 4.4.2 Two Important Families of OSDA -- 4.5 Structure Diversity of Germanosilicates/Silicogermanates -- 4.5.1 Relationship Between Composition and Structure -- 4.5.2 Pore Opening -- 4.6 Possibility of Elimination of Ge and Catalytic Research of Germanosilicates -- 4.6.1 The Price Concern of Ge -- 4.6.2 Removal of Ge in Zeolite Synthesis -- 4.6.3 Removal of Ge with Post‐synthesis -- 4.6.4 Catalytic Research of Germanosilicates -- 4.7 Conclusions and Outlook -- References -- Chapter 5 Structural Modifications on Germanosilicates -- 5.1 Introduction -- 5.2 Germanosilicates to Layered Precursors -- 5.2.1 UTL to IPC‐1P -- 5.3 ADOR Strategy for Developing New Zeolite Structures -- 5.3.1 Assembly -- 5.3.2 Disassembly -- 5.3.3 Organization -- 5.3.4 Reassembly -- 5.3.5 Liquid‐phase ADOR -- 5.3.5.1 The UTL Case -- 5.3.5.2 The CIT‐13 Case -- 5.3.5.3 The UOV Case -- 5.3.5.4 The IWW Case -- 5.3.6 Vapor‐phase ADOR -- 5.3.7 Reductive Degermanation -- 5.3.8 Solid‐state Transformations -- 5.4 Structure Stabilization -- 5.4.1 Degermanation -- 5.4.2 Functionalization With Catalytic Sites. |
5.4.3 Slow Disassembly -- 5.4.4 Reverse ADOR -- 5.5 Germanosilicate‐Derived Catalysts -- 5.5.1 Summary and Perspectives -- Acknowledgements -- References -- Chapter 6 Heteroatom‐Containing Dendritic Mesoporous Silica Nanoparticles -- 6.1 Introduction -- 6.2 Main Synthetic Methods and Formation Mechanism of Pure Silica‐Based Dendritic Mesoporous Silica Nanoparticles (DMSNs) -- 6.2.1 Main Synthetic Methods of Dendritic Mesoporous Silica Nanoparticles (DMSNs) -- 6.2.2 Unified Formation Mechanism of Dendritic Mesoporous Silica Nanoparticles -- 6.3 Synthesis of Heteroatom‐Containing DMSNs and Their Catalytic Applications -- 6.3.1 One‐Pot Doping Strategy for DMSNs Containing Heteroatoms (Al/Ti/V/Sn/Mn/Fe/Co) -- 6.3.2 Post‐grafting for Surface Metal Complexes -- 6.3.3 Loading of Metal and/or Metal Oxide Nanoparticles |
|
|
|
|
|
|
|
Within the Nanopores -- 6.4 Summary and Perspectives -- Acknowledgments -- References -- Chapter 7 Chemical Post‐Modifications of Titanosilicates -- 7.1 Introduction -- 7.2 Diffusion and Adsorption/Desorption -- 7.2.1 Hierarchical Titanosilicates -- 7.2.2 Surface Hydrophilicity and Hydrophobicity -- 7.3 Surface Reaction -- 7.3.1 Ti Active Sites Content -- 7.3.2 Ti Active Sites Distribution -- 7.3.3 Ti Active Sites Properties -- 7.3.3.1 Electrophilicity of Ti Active Sites -- 7.3.3.2 Coordinate State of Ti Active Sites -- 7.3.3.3 Adjacent Silanol Groups of Ti Active Sites -- 7.4 Solvent Effect -- 7.4.1 Effect of Solvent on Diffusion -- 7.4.2 Effect of Solvent on Adsorption/Desorption -- 7.4.3 Effect of Solvent on Surface Reactions -- 7.4.3.1 Effect on the Formation on Ti O O H -- 7.4.3.2 Effect on the Stability of Ti O O H -- 7.4.3.3 Effect on the Transfer of Ti O O H -- 7.5 Conclusions and Prospects -- References -- Chapter 8 Spectroscopic Characterization of Heteroatom‐Containing Zeolites -- 8.1 X‐Ray Technique. |
8.1.1 XRD Determination of Framework Structure and Heteroatoms in Zeolites -- 8.1.2 XAS Characterization of Metals in Zeolite -- 8.1.3 XPS Analysis of the Chemical State of Metal Species -- 8.2 Ultraviolet-Visible‐Near Infrared (UV-VIS-NIR) Spectroscopy -- 8.2.1 UV-VIS-NIR Characterization of Framework and Non‐Framework Metal Species -- 8.2.2 UV-VIS-NIR Characterization of Metal Species on Ion Exchange Sites of Zeolites -- 8.3 Raman Spectroscopy -- 8.3.1 Raman Study of Synthesis Mechanism and Assembly of Metal‐Zeolites -- 8.3.2 Raman Characterization of Active Metal‐Oxygen Species in Zeolites -- 8.4 Solid‐State NMR Spectroscopy -- 8.4.1 Solid‐State NMR Characterization of Metal Elements in Zeolites -- 8.4.2 Solid‐State Correlation NMR Measurement of Active Site Proximity and Host-Guest Interactions -- 8.4.3 In Situ Solid‐State NMR for the Study of Reaction Mechanisms -- 8.5 Conclusions -- Acknowledgments -- References -- Chapter 9 Theoretical Calculations of Heteroatom Substituted Zeolites -- 9.1 Introduction -- 9.2 Ti‐Doped Zeolites -- 9.2.1 Preferred Tetrahedral (T) Sites for Substitution -- 9.2.2 Lewis Acid -- 9.2.3 Active Site with H2O2 -- 9.2.4 Reaction Mechanism -- 9.2.4.1 Epoxidation of Olefins -- 9.2.4.2 Ammoximation and Oxidation of Cyclohexanone -- 9.2.4.3 Oxidation Desulfurization Reactions -- 9.3 Sn‐Doped Zeolites -- 9.3.1 Preferred Substitution T Sites and Acidity -- 9.3.2 Reaction Mechanism -- 9.3.2.1 Glucose Isomerization to Fructose and Epimerization to Mannose -- 9.3.3 Other Catalytic Reactions -- 9.4 Other Metal‐Substituted Zeolites -- 9.5 Summary and Outlook -- Acknowledgments -- References -- Chapter 10 Catalytic Ammoximation of Ketones or Aldehydes Using Titanosilicates -- 10.1 Introduction -- 10.2 The Development of Titanosilicates in Ammoximation of Ketones and Aldehydes. |
10.3 Ammoximation Mechanism and Product Distributions of Representative Ketones and Aldehydes -- 10.3.1 Titanosilicate‐Catalyzed Ammoximation Mechanism -- 10.3.2 Product Distributions for Ammoximation of Representative Carbonyl Compounds -- 10.4 Enhancing Ammoximation Performances in Titanosilicate/H2O2 System -- 10.4.1 Improvement of Catalytic Ammoximation Activity -- 10.4.1.1 Regulation of Ti Active Sites -- 10.4.1.2 Enhancement of Diffusion Properties -- 10.4.1.3 Improvement of Hydrophobicity -- 10.4.1.4 Regulation of Acid Sites -- 10.4.2 Improvement of Catalytic Ammoximation Stability -- 10.5 Ketone Ammoximation Technology for Industrial Processes -- 10.6 Titanosilicate‐Based Bifunctional Catalysts for Process Intensified or Tandem Ammoximation Reactions -- 10.7 Conclusions and Perspectives -- Acknowledgments -- References -- Chapter 11 Titanosilicate‐Based Alkene Epoxidation Catalysis -- 11.1 |
|
|
|
|
|
|
|
|
Introduction -- 11.2 Reaction Chemistry of Alkene Epoxidation Catalyzed by Titanosilicate Zeolites -- 11.3 Typical Alkene Epoxidation Cases -- 11.3.1 Propylene Epoxidation for PO Production -- 11.3.2 Propylene Chloride Epoxidation -- 11.3.3 Ethylene Epoxidation to EO, EG, and Ethers -- 11.4 Industrial Propylene Epoxidation Techniques and Processes -- 11.5 Conclusion and Outlook -- Acknowledgments -- References -- Chapter 12 Propylene Epoxidation with Cumene Hydroperoxide/Titanosilicates -- 12.1 Introduction -- 12.2 Traditional Route for PO Production (Chlorohydrin Process) -- 12.3 Co‐production Route for PO Production (PO/TBA and PO/SM Processes) -- 12.4 PO‐Only Production Routes (HPPO and CMHPPO Routes) -- 12.5 Catalyst Design for PO‐Only Routes -- 12.5.1 Mesoporous Ti‐Doped Catalysts for CMHPPO Process -- 12.5.2 Hierarchical Titanosilicates for CMHPPO Process -- 12.6 Industrial CMHPPO Process -- 12.7 Conclusions and Outlooks -- References. |
Chapter 13 Hydroxylation of Benzene and Phenol on Zeolite Catalysts. |
|
|
|
|
|
| |