| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910214926003321 |
|
|
Autore |
Gómez Alejandro E |
|
|
Titolo |
Le spectre de la révolution noire : L’impact de la révolution haïtienne dans le monde atlantique, 1790-1886 / / Alejandro E. Gómez |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Rennes, : Presses universitaires de Rennes, 2017 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (318 p.) |
|
|
|
|
|
|
Soggetti |
|
History |
Political Science |
esclave |
esclavage |
Atlantique (région) |
Haïti |
Révolution haïtienne 1791-1804 |
Moviments antiesclavistes - Haití - Història |
Haití Història 1791-1804, Revolució Influència |
Amèrica Relacions racials Història S. XIX |
França Relacions racials Història S. XIX |
Haití Història 1791-1804, Revolució |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
La révolution haïtienne a provoqué un traumatisme culturel jusqu’à constituer un véritable syndrome collectif de portée occidentale. Ce livre en montre l’extension et les conséquences en analysant dans le détail et dans diverses aires culturelles du monde atlantique (anglophone et hispanophone) chacune de ses manifestations, voire de ses enjeux sur les plans militaire et politique, à travers des outils analytiques inspirés notamment des sciences cognitives. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910808679703321 |
|
|
Autore |
Parker Jeffrey S. |
|
|
Titolo |
Low-energy lunar trajectory design / / Jeffrey S. Parker and Rodney L. Anderson |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hoboken, New Jersey : , : Wiley, , 2014 |
|
©2014 |
|
|
|
|
|
|
|
|
|
ISBN |
|
1-118-85531-0 |
1-118-85506-X |
1-118-85497-7 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (437 p.) |
|
|
|
|
|
|
Collana |
|
JPL Deep-Space Communications and Navigation Series |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Lunar probes - Trajectories |
Space flight to the moon - Cost control |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover; Title Page; Copyright Page; CONTENTS; Foreword; Preface; Acknowledgments; Authors; 1 Introduction and Executive Summary; 1.1 Purpose; 1.2 Organization; 1.3 Executive Summary; 1.3.1 Direct, Conventional Transfers; 1.3.2 Low-Energy Transfers; 1.3.3 Summary: Low-Energy Transfers to Lunar Libration Orbits; 1.3.4 Summary: Low-Energy Transfers to Low Lunar Orbits; 1.3.5 Summary: Low-Energy Transfers to the Lunar Surface; 1.4 Background; 1.5 The Lunar Transfer Problem; 1.6 Historical Missions; 1.6.1 Missions Implementing Direct Lunar Transfers |
1.6.2 Low-Energy Missions to the Sun-Earth Lagrange Points1.6.3 Missions Implementing Low-Energy Lunar Transfers; 1.7 Low-Energy Lunar Transfers; 2 Methodology; 2.1 Methodology Introduction; 2.2 Physical Data; 2.3 Time Systems; 2.3.1 Dynamical Time, ET; 2.3.2 International Atomic Time, TAI; 2.3.3 Universal Time, UT; 2.3.4 Coordinated Universal Time, UTC; 2.3.5 Lunar Time; 2.3.6 Local True Solar Time, LTST; 2.3.7 Orbit Local Solar Time, OLST; 2.4 Coordinate Frames; 2.4.1 EME2000; 2.4.2 EMO2000; 2.4.3 Principal Axis Frame; 2.4.4 IAU Frames; 2.4.5 Synodic Frames; 2.5 Models; 2.5.1 CRTBP |
2.5.2 Patched Three-Body Model2.5.3 JPL Ephemeris; 2.6 Low-Energy |
|
|
|
|
|
|
|
|
|
|
|
Mission Design; 2.6.1 Dynamical Systems Theory; 2.6.2 Solutions to the CRTBP; 2.6.3 Poincaré Maps; 2.6.4 The State Transition and Monodromy Matrices; 2.6.5 Differential Correction; 2.6.6 Constructing Periodic Orbits; 2.6.7 The Continuation Method; 2.6.8 Orbit Stability; 2.6.9 Examples of Practical Three-Body Orbits; 2.6.10 Invariant Manifolds; 2.6.11 Orbit Transfers; 2.6.12 Building Complex Orbit Chains; 2.6.13 Discussion; 2.7 Tools; 2.7.1 Numerical Integrators; 2.7.2 Optimizers; 2.7.3 Software |
3 Transfers to Lunar Libration Orbits3.1 Executive Summary; 3.2 Introduction; 3.3 Direct Transfers Between Earth and Lunar Libration Orbits; 3.3.1 Methodology; 3.3.2 The Perigee-Point Scenario; 3.3.3 The Open-Point Scenario; 3.3.4 Surveying Direct Lunar Halo Orbit Transfers; 3.3.5 Discussion of Results; 3.3.6 Reducing the ΔV Cost; 3.3.7 Conclusions; 3.4 Low-Energy Transfers Between Earth and Lunar Libration Orbits; 3.4.1 Modeling a Low-Energy Transfer using Dynamical Systems Theory; 3.4.2 Energy Analysis of a Low-Energy Transfer |
3.4.3 Constructing a Low-Energy Transfer in the Patched Three-Body Model3.4.4 Constructing a Low-Energy Transfer in the Ephemeris Model of the Solar System; 3.4.5 Families of Low-Energy Transfers; 3.4.6 Monthly Variations in Low-Energy Transfers; 3.4.7 Transfers to Other Three-Body Orbits; 3.5 Three-Body Orbit Transfers; 3.5.1 Transfers from an LL2 Halo Orbit to a Low Lunar Orbit; 4 Transfers to Low Lunar Orbits; 4.1 Executive Summary; 4.2 Introduction; 4.3 Direct Transfers Between Earth and Low Lunar Orbit; 4.4 Low-Energy Transfers Between Earth and Low Lunar Orbit; 4.4.1 Methodology |
4.4.2 Example Survey |
|
|
|
|
|
|
Sommario/riassunto |
|
<ul><li>Surveys thousands of possible trajectories that may be used to transfer spacecraft between Earth and the moon, including transfers to lunar libration orbits, low lunar orbits, and the lunar surface</li><li>Provides information about the methods, models, and tools used to design low-energy lunar transfers</li><li>Includes discussion about the variations of these transfers from one month to the next, and the important operational aspects of implementing a low-energy lunar transfer</li><li>Additional discussions address navigation, station-keeping, and spacecraft systems issues</li></ul> |
|
|
|
|
|
|
|
| |