1.

Record Nr.

UNINA9910166638203321

Autore

Liu Yushan <1986->

Titolo

Impedance source power electronic converters / / authored by Yushan Liu, Texas A&M University at Qatar, Qatar Foundation, Doha, Qatar; Haitham Abu-Rub, Texas A&M University at Qatar, Qatar Foundation, Doha, Qatar; Baoming Ge, Texas A&M University, College Station, USA; Frede Blaabjerg, Aalborg University, Aalborg East, Denmark; Omar Ellabban, Texas A&M University at Qatar, Qatar Foundation, Doha, Qatar, Helwan University, Cairo, Egypt; Poh Chiang Loh, Aalborg University, Aalborg East, Denmark 0002732136

Pubbl/distr/stampa

Chichester, West Sussex, United Kingdom : , : John Wiley and Sons, Inc., , 2016

[Piscataqay, New Jersey] : , : IEEE Xplore, , [2016]

ISBN

1-119-03711-5

1-119-03710-7

1-119-03708-5

Edizione

[First edition.]

Descrizione fisica

1 online resource (423 p.)

Collana

Wiley - IEEE

Disciplina

621.3815322

Soggetti

Electric current converters

Energy conservation - Equipment and supplies

Transfer impedance

Electric power production - Equipment and supplies

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references at the end of each chapters and index.

Nota di contenuto

-- 1. Background and Current Status -- 1.1 General Introduction of Electrical Power Generation -- 1.1.1 Energy Systems -- 1.1.2 Existing Power Converter Topologies -- 1.2 Z-Source Converter as Single-Stage Power Conversion System -- 1.3 Background and Advantages Compared to Existing Technology -- 1.4 Classification and Current Status -- 1.5 Future Trends -- 1.6 Contents Overview -- 2. Voltage-Fed Z-Source/Quasi-Z-Source Inverters -- 2.1 Topologies of Voltage-Fed Z-Source/Quasi-Z-Source Inverters -- 2.2 Modeling of Voltage-Fed qZSI -- 2.2.1 Steady-State Model -- 2.2.2 Dynamic Model -- 2.3



Simulation Results -- 2.3.1 Simulation of qZSI Modeling -- 2.3.2 Circuit Simulation Results of Control System -- 2.4 Conclusion -- 3. Current-Fed Z-Source Inverter -- 3.1 Introduction -- 3.2 Topology Modification -- 3.3 Operation Principles -- 3.3.1 Current-Fed Z-Source Inverter -- 3.3.2 Current-Fed Quasi-Z-Source Inverter -- 3.4 Modulation -- 3.5 Modeling and Control -- 3.6 Passive Components Design Guidelines -- 3.7 Discontinuous Operation Modes -- 3.8 Current-Fed Z-source Inverter/ Current-Fed quasi-Z-source Inverter Applications -- 3.9 Summary -- 4. Modulation Methods and Comparison -- 4.1 Sinewave Pulsewidth Modulations -- 4.1.1 Simple Boost Control -- 4.1.2 Maximum Boost Control -- 4.1.3 Maximum Constant Boost Control -- 4.2 Space Vector Modulations -- 4.2.1 Traditional SVM -- 4.2.2 SVMs for ZSI/qZSI -- 4.3 Pulsewidth Amplitude Modulation -- 4.4 Comparison of All Modulation Methods -- 4.4.1 Performance Analysis -- 4.4.2 Simulation and Experimental Results -- 4.5 Conclusion -- 5. Control of Shoot-Through Duty Cycle: An Overview -- 5.1 Summary of Closed-Loop Control Methods -- 5.2 Single-Loop Methods -- 5.3 Double-Loop Methods -- 5.4 Conventional Regulators and Advanced Control Methods -- 6. Z-Source Inverter: Topology Improvements Review -- 6.1 Introduction -- 6.2 Basic Topology Improvements -- 6.2.1 Bidirectional Power Flow -- 6.2.2 High-Performance Operation -- 6.2.3 Low Inrush Current.

6.2.4 Soft-Switching -- 6.2.5 Neutral Point -- 6.2.6 Reduced Leakage Current -- 6.2.7 Joint Earthing -- 6.2.8 Continuous Input Current -- 6.2.9 Distributed Z-network -- 6.2.10 Embedded Source -- 6.3 Extended Boost Topologies -- 6.3.1 Switched Inductor Z-Source Inverter -- 6.3.2 Tapped-Inductor Z-Source Inverter -- 6.3.3 Cascaded Quasi-Z-Source Inverter -- 6.3.4 Transformer-Based Z-Source Inverter -- 6.3.5 High Frequency Transformer Isolated Z-Source Inverter -- 6.4 L-Z-Source Inverter -- 6.5 Changing the ZSI Topology Arrangement -- 6.6 Conclusion -- 7. Typical Transformer-Based Z-Source/Quasi-Z Source Inverters -- 7.1 Fundamental of Trans-ZSI -- 7.1.1 Configuration of Current-Fed and Voltage-Fed Tran-ZSI -- 7.1.2 Operating Principle of Voltage-Fed Tran-ZSI -- 7.1.3 Steady-State Model -- 7.1.4 Dynamic Model -- 7.1.5 Simulation Results -- 7.2 LCCT-ZSI/qZSI -- 7.2.1 Configuration and Operation of LCCT-ZSI -- 7.2.2 Configuration and Operation of LCCT-qZSI -- 7.2.3 Simulation Results -- 7.3 Conclusion -- 8. Z-Source/Quasi-Z-Source AC-DC Rectifiers -- 8.1 Topologies of Voltage-Fed Z-Source/Quasi-Z-Source Rectifiers -- 8.2 Operating Principle -- 8.3 Dynamic Modeling -- 8.3.1 DC-Side Dynamic Model of qZSR -- 8.3.2 AC-Side Dynamic Model of Rectifier Bridge -- 8.4 Simulation Results -- 8.5 Conclusion -- 9. Z-Source DC-DC Converters -- 9.1 Topologies -- 9.2 Comparison -- 9.3 Example Simulation Model and Results -- 10. Z-Source Matrix Converters -- 10.1 Introduction -- 10.2 Z-Source Indirect Matrix Converter (all-silicon solution) -- 10.2.1 Different Topology Configurations -- 10.2.2 Operating Principle and Equivalent Circuits -- 10.2.3 Parameter Design of the QZS-Network -- 10.2.4 QZSIMC (all-silicon solution) Applications -- 10.3 Z-Source Indirect Matrix Converter (not all-silicon solution) -- 10.3.1 Topology Different Configurations -- 10.3.2 Operating Principle and Equivalent Circuits -- 10.3.3 Parameter Design of the QZS Network -- 10.3.4 ZS/QZSIMC (not all-silicon solution) Applications.

10.4 Z-Source Direct Matrix Converter -- 10.4.1 Alternative Topology Configurations -- 10.4.2 Operating Principle and Equivalent Circuits -- 10.4.3 Shoot-Through Boost Control Method -- 10.4.4 Applications of the QZSDMC -- 10.5 Summary -- 11. Energy Stored Z-Source/Quasi-Z-Source Inverters -- 11.1 Energy Stored Z-Source/Quasi-Z Source



Inverters -- 11.1.1 Modeling of qZSI with Battery -- 11.1.2 Controller Design -- 11.2 Example Simulations -- 11.2.1 Case 1: SOCmin<SOC<SOCmax -- 11.2.2 Case 2: Avoidance of Battery Overcharging -- 11.3 Conclusion -- 12. Z-Source Multilevel Inverters -- 12.1 Z-Source NPC Inverter -- 12.1.1 Configuration -- 12.1.2 Operating Principles -- 12.1.3 Modulation Scheme -- 12.2 Z-Source/Quasi-Z Source Cascade Multilevel Inverter -- 12.2.1 Configuration -- 12.2.2 Operating Principles -- 12.2.3 Modulation Scheme -- 12.2.4 System-Level Modeling and Control -- 12.2.5 Simulation Results -- 12.3 Conclusion -- 13. Design of Z-Source/Quasi-Z-Source inverter -- 13.1 Z-Source Network Parameters -- 13.1.1 Inductance and Capacitance of Three-Phase qZSI -- 13.1.2 Inductance and Capacitance of Single-Phase qZSI -- 13.2 Loss Calculation Method -- 13.2.1 H-bridge Device Power Loss -- 13.2.2 qZS Diode Power Loss -- 13.2.3 qZS Inductor Power Loss -- 13.2.4 qZS Capacitor Power Loss -- 13.3 Voltage and Current Stress -- 13.4 Coupled Inductor Design -- 13.5 Efficiency, Cost, and Volume Comparison to Conventional Inverter -- 13.5.1 Efficiency Comparison -- 13.5.2 Cost and Volume Comparison -- 13.6 Conclusion -- 14. Applications in Photovoltaic Power Systems -- 14.1 Photovoltaic Power Characteristics -- 14.2 Typical Configurations of Single-Phase and Three-Phase Systems -- 14.3 Parameter Design Method -- 14.4 MPPT Control and System Control Methods -- 14.5 Examples Demonstration -- 14.5.1 Single-Phase qZS PV System and Simulation Results -- 14.5.2 Three-Phase qZS PV Power System and Simulation Results -- 14.5.3 1-MW/11-kV qZS CMI Based PV Power System and Simulation Results.

14.6 Conclusion -- 15. Applications in Wind Power -- 15.1 Wind Power Characteristics -- 15.2 Typical Configurations -- 15.3 Parameters Design -- 15.4 MPPT Control and System Control Methods -- 15.5 Simulation Results of a qZS Wind Power System -- 15.6 Conclusion -- 16. Z-Source Inverter for Motor Drives Application: A Review -- 16.1 Introduction -- 16.2 Z-Source Inverter Feeding a Permanent Magnet Brushless DC Motor -- 16.3 Z-Source Inverter Feeding a Switched Reluctance Motor -- 16.4 Z-Source Inverter Feeding a Permanent Magnet Synchronous Motor -- 16.5 Z-Source Inverter Feeding an Induction Motor -- 16.5.1 Scalar Control (V/F) Technique for ZSI-IM drive system -- 16.5.2 Field Oriented Control Technique for ZSI-IM Drive System -- 16.5.3 Direct Torque Control (DTC) Technique for ZSI-IM Drive System -- 16.5.4 Predictive Torque Control for ZSI-IM Drive System -- 16.6 Multiphase Z-source Inverter Motor Drive System -- 16.7 Two-Phase Motor Drive System with Z-Source Inverter -- 16.8 Single-Phase Induction Motor Drive System Using Z-Source Inverter -- 16.9 Z-Source Inverter for Vehicular Applications -- 16.10 Conclusion -- 17. Impedance Source Multi-Leg Inverters -- 17.1 Impedance Source Four-Leg Inverter -- 17.1.1 Introduction -- 17.1.2 Unbalanced Load Analysis Based on Fortescue components -- 17.1.3 Effects of Unbalanced Load Condition -- 17.1.4 Inverter Topologies for Unbalanced Loads -- 17.1.5 Z-Source Four-Leg Inverter -- 17.1.6 Switching Schemes for Three-Phase Four-Leg Inverter -- 17.1.7 Buck/Boost Conversion Modes Analysis -- 17.2 Impedance Source Five-Leg (Five-Phase) Inverter -- 17.2.1 Five-Phase VSI Model -- 17.2.2 Space Vector PWM for a Five-Phase Standard VSI -- 17.2.3 Space Vector PWM for Five-Phase qZSI -- 17.2.4 Discontinuous Space Vector PWM for Five-Phase qZSI -- 17.3 Conclusion -- 18. Model Predictive Control of Impedance Source Inverters -- 18.1 Introduction -- 18.2 Overview of Model Predictive Control -- 18.3 Mathematical Model of the Z-Source Inverters.

18.3.1 Overview of Topologies -- 18.3.2 Three-Phase Three-Leg



Inverter Model -- 18.3.3 Three-Phase Four-Leg Inverter Model -- 18.3.4 Multi-Phase Inverter Model -- 18.4 Model Predictive Control of the Z-Source Three-Phase Three-leg Inverter -- 18.5 Model Predictive Control of the Z-Source Three-Phase Four-leg Inverter -- 18.5.1 Discrete-Time Model of the Output Current for Four-Leg Inverter -- 18.5.2 Control Algorithm -- 18.6 Model Predictive Control of the Z-Source Five-Phase Inverter -- 18.6.1 Discrete-Time Model of the Five-Phase Load -- 18.6.2 Cost Function for the Load Current -- 18.6.3 Control Algorithm -- 18.7 Performance Investigation -- 18.8 Conclusion -- 19. Grid Integration of Quasi-Z-Source Based PV Multilevel Inverter -- 19.1 Introduction -- 19.2 Topology and Modeling -- 19.3 Grid Synchronization -- 19.4 Power Flow Control -- 19.4.1 Proportional Integral Controller -- 19.4.2 Model Predictive Control -- 19.5 Low Voltage Ride-Through Capability -- 19.6 Islanding Protection -- 19.6.1 Active Frequency Drift (AFD) -- 19.6.2 Sandia Frequency Shift (SFS) -- 19.6.3 Slip-Mode Frequency Shift (SMS) -- 19.6.4 Simulation Results -- 19.7 Conclusion -- 20. Future Trends -- 20.1 General Expectation -- 20.1.1 Volume and Size Reduction by Wide Band-Gap Devices -- 20.1.2 Parameters Minimization for Single-Phase qZS Inverter -- 20.1.3 Novel Control Methods -- 20.1.4 Future Applications -- 20.2 Illustration of Using Wide Band-Gap Devices -- 20.2.1 Impact on Z-Source Network -- 20.2.2 Analysis and Evaluation of SiC Devices Based qZSI -- 20.3 Conclusion.

Sommario/riassunto

Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key features: . Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies.. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods.. Presents the latest power conversion solutions that aim to advance the role of power electronics into industries and sustainable energy conversion systems.. Compares impedance source converter/inverter applications in renewable energy power generation and electric vehicles as well as different industrial applications.. Provides an overview of existing challenges, solutions and future trends.. Supported by calculation examples, simulation models and results. Highly accessible, this is an invaluable resource for researchers, postgraduate/graduate students studying power electronics and its application in industry and renewable energy conversion as well as practising R&D engineers. Readers will be able to apply the presented material for the future design of the next generation of efficient power electronic converters/inverters.