1.

Record Nr.

UNINA9910166635403321

Autore

Marwala Tshilidzi <1971->

Titolo

Probabilistic finite element model updating using Bayesian statistics / / Tshilidzi Marwala and Ilyes Boulkaibet, Sondipon Adhikari

Pubbl/distr/stampa

Chichester, [England] : , : Wiley, , 2017

©2017

ISBN

1-119-15301-8

1-119-15300-X

1-119-15302-6

Descrizione fisica

1 online resource (245 p.)

Disciplina

620.001/51825

Soggetti

Finite element method

Bayesian statistical decision theory

Engineering - Mathematical models

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references at the end of each chapters and index.

Nota di contenuto

Title Page ; Copyright; Contents; Acknowledgements; Nomenclature ; Chapter 1 Introduction to Finite Element Model Updating ; 1.1 Introduction; 1.2 Finite Element Modelling; 1.3 Vibration Analysis; 1.3.1 Modal Domain Data; 1.3.2 Frequency Domain Data; 1.4 Finite Element Model Updating; 1.5 Finite Element Model Updating and Bounded Rationality; 1.6 Finite Element Model Updating Methods; 1.6.1 Direct Methods; 1.6.2 Iterative Methods; 1.6.3 Artificial Intelligence Methods; 1.6.4 Uncertainty Quantification Methods; 1.7 Bayesian Approach versus Maximum Likelihood Method; 1.8 Outline of the Book

ReferencesChapter 2 Model Selection in Finite Element Model Updating ; 2.1 Introduction; 2.2 Model Selection in Finite Element Modelling; 2.2.1 Akaike Information Criterion; 2.2.2 Bayesian Information Criterion; 2.2.3 Bayes Factor; 2.2.4 Deviance Information Criterion; 2.2.5 Particle Swarm Optimisation for Model Selection; 2.2.6 Regularisation; 2.2.7 Cross-Validation; 2.2.8 Nested Sampling for Model Selection; 2.3 Simulated Annealing; 2.4 Asymmetrical H-Shaped Structure; 2.4.1 Regularisation; 2.4.2 Cross-Validation; 2.4.3 Bayes



Factor and Nested Sampling; 2.5 Conclusion; References

Chapter 3 Bayesian Statistics in Structural Dynamics 3.1 Introduction; 3.2 Bayes ́Rule; 3.3 Maximum Likelihood Method; 3.4 Maximum a Posteriori Parameter Estimates; 3.5 Laplaceś Method; 3.6 Prior, Likelihood and Posterior Function of a Simple Dynamic Example; 3.6.1 Likelihood Function; 3.6.2 Prior Function; 3.6.3 Posterior Function; 3.6.4 Gaussian Approximation; 3.7 The Posterior Approximation; 3.7.1 Objective Function; 3.7.2 Optimisation Approach; 3.7.3 Case Example; 3.8 Sampling Approaches for Estimating Posterior Distribution; 3.8.1 Monte Carlo Method

3.8.2 Markov Chain Monte Carlo Method3.8.3 Simulated Annealing; 3.8.4 Gibbs Sampling; 3.9 Comparison between Approaches; 3.9.1 Numerical Example; 3.10 Conclusions; References; Chapter 4 Metropolis-Hastings and Slice Sampling for Finite Element Updating ; 4.1 Introduction; 4.2 Likelihood, Prior and the Posterior Functions; 4.3 The Metropolis-Hastings Algorithm; 4.4 The Slice Sampling Algorithm; 4.5 Statistical Measures; 4.6 Application 1: Cantilevered Beam; 4.7 Application 2: Asymmetrical H-Shaped Structure; 4.8 Conclusions; References

Chapter 5 Dynamically Weighted Importance Sampling for Finite Element Updating 5.1 Introduction; 5.2 Bayesian Modelling Approach; 5.3 Metropolis-Hastings (M-H) Algorithm; 5.4 Importance Sampling; 5.5 Dynamically Weighted Importance Sampling; 5.5.1 Markov Chain; 5.5.2 Adaptive Pruned-Enriched Population Control Scheme; 5.5.3 Monte Carlo Dynamically Weighted Importance Sampling; 5.6 Application 1: Cantilevered Beam; 5.7 Application 2: H-Shaped Structure; 5.8 Conclusions; References; Chapter 6 Adaptive Metropolis-Hastings for Finite Element Updating ; 6.1 Introduction

6.2 Adaptive Metropolis-Hastings Algorithm