1.

Record Nr.

UNINA9910166634303321

Autore

Jha Animesh

Titolo

Inorganic glasses for photonics : fundamentals, engineering, and applications / / Animesh Jha

Pubbl/distr/stampa

Chichester, England : , : Wiley, , 2016

©2016

ISBN

1-118-69609-3

Descrizione fisica

1 online resource (343 p.)

Collana

Wiley Series in Materials for Electronic and Optoelectronic Applications

Disciplina

621.3650284

Soggetti

Glass - Optical properties

Photonics - Materials

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references at the end of each chapters and index.

Nota di contenuto

Inorganic Glasses for Photonics: Fundamentals, Engineering and Applications; Contents; Series Preface; Preface; 1: Introduction; 1.1 Definition of Glassy States; 1.2 The Glassy State and Glass Transition Temperature (Tg); 1.3 Kauzmann Paradox and Negative Change in Entropy; 1.4 Glass-Forming Characteristics and Thermodynamic Properties; 1.5 Glass Formation and Co-ordination Number of Cations; 1.6 Ionicity of Bonds of Oxide Constituents in Glass-Forming Systems; 1.7 Definitions of Glass Network Formers, Intermediates and Modifiers and Glass-Forming Systems

1.7.1 Constituents of Inorganic Glass-Forming Systems1.7.2 Strongly Covalent Inorganic Glass-Forming Networks; 1.7.3 Conditional Glass Formers Based on Heavy-Metal Oxide Glasses; 1.7.4 Fluoride and Halide Network Forming and Conditional Glass-Forming Systems; 1.7.5 Silicon Oxynitride Conditional Glass-Forming Systems; 1.7.6 Chalcogenide Glass-Forming Systems; 1.7.7 Chalcohalide Glasses; 1.8 Conclusions; Selected Bibliography; References; 2: Glass Structure, Properties and Characterization; 2.1 Introduction; 2.1.1 Kinetic Theory of Glass Formation and Prediction of Critical Cooling Rates

2.1.2 Classical Nucleation Theory2.1.3 Non-Steady State Nucleation; 2.1.4 Heterogeneous Nucleation; 2.1.5 Nucleation Studies in Fluoride



Glasses; 2.1.6 Growth Rate; 2.1.7 Combined Growth and Nucleation Rates, Phase Transformation and Critical Cooling Rate; 2.2 Thermal Characterization using Differential Scanning Calorimetry (DSC) and Differential Thermal Analysis (DTA) Techniques; 2.2.1 General Features of a Thermal Characterization; 2.2.2 Methods of Characterization; 2.2.3 Determining the Characteristic Temperatures; 2.2.4 Determination of Apparent Activation Energy of Devitrification

2.3 Coefficients of Thermal Expansion of Inorganic Glasses2.4 Viscosity Behaviour in the near-Tg, above Tg and in the Liquidus Temperature Ranges; 2.5 Density of Inorganic Glasses; 2.6 Specific Heat and its Temperature Dependence in the Glassy State; 2.7 Conclusion; References; 3: Bulk Glass Fabrication and Properties; 3.1 Introduction; 3.2 Fabrication Steps for Bulk Glasses; 3.2.1 Chemical Vapour Technique for Oxide Glasses; 3.2.2 Batch Preparation for Melting Glasses; 3.2.3 Chemical Treatment Before and During Melting

3.3 Chemical Purification Methods for Heavier Oxide (GeO2 and TeO2) Glasses3.4 Drying, Fusion and Melting Techniques for Fluoride Glasses; 3.4.1 Raw Materials; 3.4.2 Control of Hydroxyl Ions during Drying and Melting of Fluorides; 3.5 Chemistry of Purification and Melting Reactions for Chalcogenide Materials; 3.6 Need for Annealing Glass after Casting; 3.7 Fabrication of Transparent Glass Ceramics; 3.8 Sol-Gel Technique for Glass Formation; 3.8.1 Background Theory; 3.8.2 Examples of Materials Chemistry and Sol-Gel Forming Techniques; 3.9 Conclusions; References

4: Optical Fibre Design, Engineering, Fabrication and Characterization