|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910163957303321 |
|
|
Autore |
Tan Liansheng |
|
|
Titolo |
A generalized framework of linear multivariable control / / Liansheng Tan |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Oxford, United Kingdom ; ; Cambridge, MA : , : Butterworth-Heinemann, , [2017] |
|
©2017 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[First edition.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (1 volume) : illustrations |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Control theory |
Algebras, Linear |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Mathematical preliminaries -- Generalized inverse of matrix and solution of linear system equation -- Polynomial fraction description -- Stability -- Fundamental approaches to control system analysis -- Determination of finite and infinite frequency structure of a rational matrix -- The solution of a regular PMD and the set of impulsive free initial conditions -- A refined resolvent decomposition of a regular polynomial matrix and application to the solution of regular PMDs -- Frequency structures of generalized companion form and application to the solution of regular PMDs -- A generalized chain-scattering representation and its algebraic system properties -- Realization of behavior -- Related extensions to system well-posedness and internal stability -- Nonstandard H [infinity symbol] control problem : a generalized chain-scattering representation approach -- Internet congestion control : a linear multivariable control look. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
A Generalized Framework of Linear Multivariable Control proposes a number of generalized models by using the generalized inverse of matrix, while the usual linear multivariable control theory relies on some regular models. The book supports that in H-infinity control, the linear fractional transformation formulation is relying on the inverse of the block matrix. If the block matrix is not regular, the H-infinity |
|
|
|
|
|
|
|
|
|
|
control does not apply any more in the normal framework. Therefore, it is very important to relax those restrictions to generalize the classical notions and models to include some non-regular cases. This book is ideal for scholars, academics, professional engineer and students who are interested in control system theory. Presents a comprehensive set of numerical procedures, algorithms, and examples on how to deal with irregular models Provides a summary on generalized framework of linear multivariable control that focuses on generalizations of models and notions Introduces a number of generalized models by using the generalized inverse of matrix |
|
|
|
|
|
| |