signaling' remained controversial. However, over last several years this dogmatic view has been considerably modified. The existence of cancer-associated antigens and 'danger signaling' has been proven to be incontrovertible. These developments have together paved way for the establishment of the attractive concept of "immunogenic cell death" (ICD). It has been established that a restricted class of chemotherapeutics/targeted therapeutics, radiotherapy, photodynamic therapy and certain oncolytic viruses can induce a form of cancer cell death called ICD which is accompanied by spatiotemporally defined emission of danger signals. These danger signals along with other factors help cancer cells undergoing ICD to activate host innate immune cells, which in turn activate T cell-based immunity that helps eradicate live (or residual) surviving cancer cells. The emergence of ICD has been marred by some controversy. ICD has been criticized to be either experimental model or setting-specific or mostly a concept based on rodent studies that may have very limited implications for clinical application. However, in recent times it has emerged (through mainly retrospective or prognostic studies) that ICD can work in various human clinical settings hinting towards clinical applicability of ICD. However a widespread consensus on this issue is still transitional. In the current Research Topic we aimed to organize and intensify a discussion that strives to bring together the academic and clinical research community in order to provide a background to the current state-of-the-art in ICD associated bench-side research and to initiate fruitful discussions on present and future prospects of ICD translating towards the clinical, bedside reality. |