| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910162860703321 |
|
|
Autore |
Owona Joseph |
|
|
Titolo |
Les systèmes politiques précoloniaux au Cameroun |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
[Place of publication not identified], : L'Harmattan, 2015 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (116 p.) |
|
|
|
|
|
|
Soggetti |
|
Chiefdoms - History - Cameroon |
Political customs and rites - History - Cameroon |
Regions & Countries - Africa |
History & Archaeology |
Cameroon Politics and government To 1960 |
Cameroon History To 1960 |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNISALENTO991003577709707536 |
|
|
Autore |
Goodfellow, Ian |
|
|
Titolo |
Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville |
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
xxii, 775 p. : ill. (some color) ; 24 cm |
|
|
|
|
|
|
Collana |
|
Adaptive computation and machine learning |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Altri autori (Persone) |
|
Bengio, Yoshuaauthor |
Courville, Aaron |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index |
|
|
|
|
|
|
Nota di contenuto |
|
Applied math and machine learning basics. Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- Deep networks: modern practices. Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolutional networks -- Sequence modeling: recurrent and recursive nets -- Practical methodology -- Applications -- Deep learning research. Linear factor models -- Autoencoders -- Representation learning -- Structured probabilistic models for deep learning -- Monte Carlo methods -- Confronting the partition function -- Approximate inference -- Deep generative models. |
|
|
|
|
|
|
|
| |