1.

Record Nr.

UNINA9910157831603321

Autore

Bhadeshia H. K. D. H (Harshad Kumar Dharamshi Hansraj), <1953->

Titolo

Steels

Pubbl/distr/stampa

San Diego : , : Elsevier Science & Technology, , 2017

©2017

ISBN

0-08-100272-6

Edizione

[Fourth edition.]

Descrizione fisica

1 online resource (490 pages)

Altri autori (Persone)

HoneycombeR. W. K (Robert William Kerr)

Disciplina

669.9/6142

669.96142

Soggetti

Steel - Metallography

Steel

Steel - Metallurgy

Physical metallurgy

Technology

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Front Cover -- Steels: Microstructure and Properties -- Copyright -- Contents -- Preface to the First Edition -- Preface to the Second Edition -- Preface to the Third Edition -- Preface to the Fourth Edition -- Acknowledgments -- Acronyms -- Nomenclature -- 1 Iron and Its Interstitial Solutions -- 1.1 Introduction -- 1.2 Allotropes of pure iron -- 1.2.1 Thin  lms and isolated particles -- 1.3 Austenite to ferrite transformation -- 1.3.1 Mechanisms of transformation -- 1.4 Carbon, nitrogen and hydrogen in solution -- 1.4.1 Solubility in a- and γ-iron -- 1.4.2 Diffusion of solutes in iron -- 1.4.3 Practical consequences of diffusion -- Surface treatment -- Homogenisation -- 1.5 Summary -- References -- Backnotes -- 2 Strengthening of Iron and Its Alloys -- 2.1 Introduction -- 2.2 Work hardening -- 2.3 Interstitial solid solution strengthening -- 2.3.1 The yield point -- 2.3.2 Role of interstitial elements in yield phenomena -- 2.3.3 Strengthening at high interstitial concentrations -- 2.4 Substitutional solution strengthening -- 2.5 Grain size -- 2.5.1 Hall-Petch effect -- 2.5.2 Nanostructured steels -- 2.6 Dispersion strengthening -- 2.7 Overall strength -- 2.8 Some practical aspects -- 2.9 Limits to strength -- 2.9.1 Theoretical strength



-- 2.9.2 Hundreds of times stronger than steel -- Fracture -- 2.10 Summary -- References -- Backnotes -- 3 Iron-Carbon Equilibrium and Plain Carbon Steels -- 3.1 Iron-carbon equilibrium phase diagram -- 3.2 Austenite-ferrite transformation -- 3.3 Austenite-cementite transformation -- 3.4 Kinetics of the γ-&gt -- a transformation -- 3.4.1 Growth kinetics of ferrite -- 3.5 Widmanstätten ferrite -- 3.5.1 Morphology -- 3.5.2 Shape change -- 3.5.3 Growth kinetics of Widmanstätten ferrite -- 3.5.4 Summary -- 3.6 Austenite-pearlite reaction -- 3.6.1 The morphology of pearlite -- 3.6.2 The crystallography of pearlite.

Pitsch/Petch relationship -- Bagaryatski relationship -- 3.6.3 Kinetics of pearlite growth -- 3.6.4 Divorced pearlite -- 3.6.5 Overall kinetics of pearlite formation -- 3.6.6 The strength of pearlite -- 3.7 Ferrite-pearlite steels -- Normalising -- Annealing -- 3.8 Summary -- References -- Backnotes -- 4 Solutes that Substitute for Iron -- 4.1 General principles -- 4.2 Alloying elements: γ and a phase  elds -- 4.3 Distribution of alloying elements in steels -- 4.4 Effect of alloying elements on the kinetics of the γ/a transformation -- 4.4.1 The effect of alloying elements on the ferrite reaction -- 4.4.2 The effect of alloying elements on the pearlite reaction -- Other effects -- 4.4.3 Alloy pearlite -- 4.5 Structural changes resulting from alloying additions -- 4.5.1 Ferrite/alloy carbide aggregates -- Continuous growth of  bres/laths -- Repeated nucleation of carbides (interphase precipitation) -- Nucleation in supersaturated ferrite -- 4.5.2 Alloy carbide  bres and laths -- 4.5.3 Interphase precipitation -- 4.5.4 Nucleation in supersaturated ferrite -- 4.6 Transformation diagrams for alloy steels -- 4.7 Light steels -- 4.8 Summary -- References -- Backnotes -- 5 Formation of Martensite -- 5.1 Introduction -- 5.2 General characteristics -- 5.2.1 The habit plane -- 5.2.2 Orientation relationships -- 5.2.3 Structure of the interface -- 5.2.4 The shape deformation -- 5.3 Crystal structure of martensite -- 5.4 Crystallography of martensitic transformations -- 5.5 Morphology of ferrous martensites -- 5.6 Kinetics of martensitic transformation -- 5.6.1 Nucleation of martensite -- 5.6.2 Growth of martensite -- 5.6.3 Overall athermal-transformation kinetics -- 5.6.4 Effect of alloying elements -- 5.6.5 Stress-induced transformation -- 5.6.6 Effect of austenite grain size -- 5.6.7 Effect of plastic strain on martensitic transformation.

5.6.8 Thermal stabilisation -- 5.7 Strength of martensite -- 5.8 Shape memory effect -- 5.9 Summary -- References -- Backnotes -- 6 Bainite -- 6.1 Introduction -- 6.2 Upper bainite (˜550-400°C) -- 6.3 Lower bainite (˜400-250°C) -- 6.4 The shape deformation -- 6.5 Carbon in bainite -- 6.6 Kinetics -- 6.7 Transition from upper to lower bainite -- 6.8 Granular bainite -- 6.9 Tempering of bainite -- 6.10 Role of alloying elements -- Carbon -- Other alloying elements -- 6.11 Use of bainitic steels -- 6.12 Summary -- References -- Backnotes -- 7 Acicular Ferrite -- 7.1 Introduction -- 7.2 Microstructure -- 7.3 Mechanism of transformation -- 7.4 Inclusions as heterogeneous nucleation sites -- 7.5 Nucleation of acicular ferrite -- 7.5.1 Lattice matching theory -- 7.5.2 Other possibilities -- 7.6 Summary -- References -- Backnotes -- 8 Heat Treatment of Steels: Hardenability -- 8.1 Introduction -- 8.2 Use of TTT and continuous cooling diagrams -- 8.3 Hardenability testing -- 8.3.1 The Grossman test -- 8.3.2 The Jominy end quench test -- 8.4 Effect of grain size and chemical composition on hardenability -- 8.5 Hardenability and heat treatment -- 8.6 Quenching stresses and quench cracks -- 8.7 Cryogenic treatment -- 8.8 Summary -- References -- Backnotes -- 9 Tempering of Martensite -- 9.1 Introduction -- 9.2 Tempering involving cementite



and transition carbides -- 9.2.1 Tempering: stage 1 -- 9.2.2 Tempering: stage 2 -- 9.2.3 Tempering: stage 3 -- 9.2.4 Tempering: stage 4 -- 9.2.5 Role of carbon content -- 9.3 Mechanical properties of tempered martensite -- 9.4 Steels with strong carbide-forming elements -- 9.4.1 The effect of alloying elements on the formation of iron carbides -- 9.4.2 The formation of alloy carbides: secondary hardening -- 9.4.3 Nucleation and growth of alloy carbides -- 9.4.4 Tempering of steels containing vanadium.

9.4.5 Tempering of steels containing chromium -- 9.4.6 Tempering of steels containing molybdenum and tungsten -- 9.4.7 Complex alloy steels -- 9.4.8 Mechanical properties of tempered alloy steels -- 9.4.9 Mechanical properties: hydrogen trapping -- 9.5 Maraging steels -- 9.6 Summary -- References -- Backnotes -- 10 Thermomechanical Treatment of Steels -- 10.1 Introduction -- 10.2 Controlled rolling of low-alloy steels -- 10.2.1 General -- 10.2.2 Grain size control during controlled rolling -- 10.2.3 Niobium atom clusters -- 10.2.4 Minimum achievable grain size -- 10.2.5 Dispersion strengthening during controlled rolling -- 10.2.6 Strength of microalloyed steels: an overall view -- 10.3 Dual-phase steels -- 10.4 TRIP-assisted steels -- 10.4.1 Low- or zero-silicon TRIP-assisted steels -- 10.4.2 Galvanising of TRIP-assisted steels -- 10.5 TWIP steels -- 10.6 Industrial steels subjected to thermomechanical treatments -- 10.7 Ausforming -- 10.8 Summary -- References -- Backnotes -- 11 The Embrittlement and Fracture of Steels -- 11.1 Introduction -- 11.2 Cleavage fracture in iron and steel -- 11.3 Factors in uencing the onset of cleavage fracture -- 11.4 Criteria for the ductile-brittle transition -- 11.5 Practical aspects of brittle fracture -- 11.6 Hydrogen embrittlement -- 11.6.1 Prevention of hydrogen embrittlement -- 11.7 Intergranular embrittlement -- 11.7.1 Temper embrittlement -- 11.8 Ductile or  brous fracture -- 11.8.1 General -- 11.8.2 Role of inclusions in ductility -- 11.8.3 Role of carbides in ductility -- 11.8.4 Overheating, burning and liquid metal embrittlement -- 11.9 Summary -- References -- Backnotes -- 12 Stainless Steel -- 12.1 Introduction -- 12.2 The iron-chromium-nickel system -- 12.3 Chromium-rich carbide in Cr-Ni austenitic steels -- 12.4 Precipitation of niobium and titanium carbides -- Grain boundary: -- Dislocations:.

Precipitation in association with stacking faults: -- Matrix precipitation: -- 12.5 Nitrides in austenitic steels -- 12.6 Intermetallic precipitation in austenite -- 12.7 Austenitic steels in practical applications -- 12.8 Oxidation resistant stainless steel -- 12.9 Duplex and ferritic stainless steels -- 12.10 Mechanically alloyed stainless steels -- 12.11 Transformation of metastable austenite -- 12.12 Summary -- References -- Backnotes -- 13 Weld Microstructures -- 13.1 Introduction -- 13.2 Fusion zone -- 13.2.1 Weld solidi cation -- 13.2.2 As-deposited microstructure -- 13.2.3 Allotriomorphic ferrite -- 13.2.4 Widmanstätten ferrite and acicular ferrite -- 13.2.5 Sensitivity to carbon -- 13.3 Heat-affected zone -- 13.3.1 Heat  ow -- 13.3.2 Microstructural zones -- 13.3.3 Coarse-grained austenite -- 13.3.4 Fine-grained austenite zone -- 13.3.5 Partially austenitic regions and local brittle zones -- 13.4 Friction stir welding of steels -- 13.5 Summary -- References -- Backnotes -- 14 Nanostructured Steels -- 14.1 Introduction -- 14.2 Why the yearning for exceedingly  ne grains? -- 14.3 Production of nanostructured steel -- 14.3.1 Shape preserving deformations -- 14.3.2 Shape altering deformations -- 14.3.3 Nanostructure without deformation -- 14.4 Detrimental nanostructures in steels -- 14.5 Summary -- References -- Backnotes -- 15 Modelling of Structure and Properties -- 15.1 Introduction -- 15.2 Example 1: alloy design -- 15.2.1 Calculation of the T0 curve -- 15.2.2 The



improvement in toughness -- 15.2.3 Precision and limits -- 15.3 Example 2: mechanical properties of mixed microstructures -- 15.3.1 Calculation of the strength of individual phases -- 15.3.2 Iron and substitutional solutes -- 15.3.3 Carbon -- 15.3.4 Dislocations -- 15.3.5 Lath size -- 15.3.6 Martensite composition and transformation temperature.

15.3.7 Strength of mixed microstructures.

Sommario/riassunto

This volume outlines the principles determining the microstructure, mechanical behavior and properties of steels, the most widely-used metallic alloy. It is updated with new material on nanostructured steels, novel alloys for energy industries, and the latest technologies for the automobile industry.