| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910155523003321 |
|
|
Autore |
Von Flotow Luise <1951-> |
|
|
Titolo |
Translating Women / edited by Luise von Flotow |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Ottawa : , : University of Ottawa Press, , 2011 |
|
Baltimore, Md. : , : Project MUSE, , 2012 |
|
©2011 |
|
|
|
|
|
|
|
|
|
ISBN |
|
1-280-69045-3 |
9786613667397 |
0-7766-1951-9 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (360 p.) |
|
|
|
|
|
|
Collana |
|
Perspectives on translation, , 1487-6396 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
The voice of nature : British women translating botany in the early nineteenth century / Alison E. Martin -- A dream of light in the eternal darkness : Karolina Pavlova's translations from the German / Tom Dolack -- Helen Maria Williams' Paul and Virginia and the experience of mediated alterity / Anna Barker -- From "Alejandra" to "Susanna" : Susan Bassnett's "Life Exchange" with Alejandra Pizarnik / Madeleine Stratford -- Re-vision and/as translation : the poetry of Adrienne Rich / Sandra Bermann -- "I like women" : regarding feminine affinities in translation / Pilar Godayol -- Ulrike Meinhof : de-fragmented and re-membered / Luise von Flotow -- Why philosophy went missing : understanding the English version of Simone de Beauvoir's Le deuxieme sexe / Anna Bogic -- The story of Ruth and Esperanza : concepts of translation in Ruth Behar's Translated woman / Kate Sturge -- Sexuality and femininity in translated chick texts / Anne-Lise Feral -- Echoes of Emily Dickinson : male and female : French translators listening to the poet / James W. Underhill -- Prefacing gender : framing Sei Shônagon for a Western audience, 1875-2006 / Valerie Henitiuk -- Translating gender/Traduire le genre : is transdiscursive translation possible? / Bella Brodzki -- On becoming in translation : articulating feminisms in the translation of Marie Vieux-Chauvet's Les rapaces / Carolyn Shread |
|
|
|
|
|
|
|
|
|
|
|
|
|
-- "Gender trouble" in the American translation of Tahar Ben Jelloun's L'Enfant de sable / Pascale Sardin. |
|
|
|
|
|
|
Sommario/riassunto |
|
Feminist theory has been widely translated, influencing the humanities and social sciences in many languages and cultures. However, these theories have not made as much of an impact on the discipline that made their dissemination possible: many translators and translation scholars still remain unaware of the practices, purposes and possibilities of gender in translation. Translating Women revives the exploration of gender in translation begun in the 1990s by Susanne de Lotbinière-Harwood's Re-belle et infidèle/The Body Bilingual (1992), Sherry Simon's Gender in Translation ( |
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910830208203321 |
|
|
Titolo |
Van der Waals heterostructures : fabrications, properties and applications / / edited by Zhuo Kang [and three others] |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Weinheim, Germany : , : Wiley-VCH, , [2023] |
|
©2023 |
|
|
|
|
|
|
|
|
|
ISBN |
|
3-527-83388-9 |
3-527-83386-2 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (338 pages) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 The 2D Semiconductor Library -- 1.1 Introduction -- 1.2 Emerging 2DLMs for Future Electronics -- 1.2.1 Classification -- 1.2.2 Elemental 2DMLs -- 1.2.2.1 IV A Group -- 1.2.2.2 V group A -- 1.2.2.3 III A Group -- 1.2.3 Hexagonal Boron Nitride (h-BN) -- 1.2.4 Transition Metal Dichalcogenides (TMDCs) -- 1.2.5 Transition Metal Carbides (TMCs) -- 1.2.6 Transition Metal Oxides (TMOs) -- References -- Chapter 2 The 2D Semiconductor Synthesis and Performances -- 2.1 Exfoliation -- 2.1.1 Starting from Graphene -- 2.1.2 Semiconducting |
|
|
|
|
|
|
|
|
|
2D Materials -- 2.1.3 Big Family of Exfoliated 2D Materials -- 2.1.4 Mechanical Exfoliation of 2D Materials -- 2.1.5 Liquid Exfoliation of 2D Materials -- 2.1.6 Other Exfoliation Method of 2D Materials -- 2.2 Chemical Vapor Deposition -- 2.2.1 Overview of Chemical Vapor Deposition -- 2.2.2 Atmospheric Pressure Chemical Vapor Deposition (APCVD) -- 2.2.2.1 Synthesis of Single-Element Materials (Graphene) -- 2.2.2.2 Synthesis of TMDCs Bielement Materials -- 2.2.3 Low-Pressure Chemical Vapor Deposition (LPCVD) -- 2.2.3.1 Synthesis of Single-Element Materials (Graphene) -- 2.2.3.2 Synthesis of TMDCs Bielement Materials -- 2.2.3.3 Synthesis of Multielement Materials -- 2.2.4 Plasma-Enhanced Chemical Vapor Deposition -- 2.2.4.1 Overview -- 2.2.4.2 Synthesis of Graphene by PECVD -- 2.2.4.3 Synthesis of VG Nanosheets by PECVD -- 2.2.4.4 Synthesis of TMDCs by PECVD -- 2.2.5 MOCVD -- 2.2.5.1 Overview -- 2.2.5.2 Synthesis of III-V Group Semiconductor by MOCVD -- 2.2.5.3 Synthesis of TMDCs by MOCVD -- References -- Chapter 3 The VdW Heterostructure Controllable Fabrications -- 3.1 Wet Transfer -- 3.1.1 Substrate Etching Techniques -- 3.1.2 Electrochemical Delamination Methods -- 3.1.3 Wedging Transfer Method -- 3.2 Controllable Selective Synthesis. |
3.2.1 Controllable Synthesis of 2D-2D Heterostructures -- 3.2.1.1 Vertical 2D-2D Heterostructures -- 3.2.1.2 Horizontal 2D-2D Heterostructures -- 3.2.1.3 One-Dimensional Heterostructures -- 3.2.2 Controllable Synthesis of 2D-1D Heterostructures -- 3.2.3 Controllable Synthesis of 2D-3D Heterostructures -- 3.3 Dry Transfer -- 3.3.1 Thermal-release Tape -- 3.3.2 Stamps -- 3.3.3 The Pick-up Methods -- References -- Chapter 4 The Mixed-dimensional VdW Heterostructures -- 4.1 Categorization of Mixed-dimensional VdWHs -- 4.2 Strategies for Constructing Mixed-dimensional VdWHs -- 4.2.1 Transfer-assisted Assembly of Mixed-dimensional VdWHs -- 4.2.2 Direct Growth of Mixed-dimensional VdWHs -- 4.3 Electronic and Sensing Applications -- 4.3.1 Transistors and Spintronics -- 4.3.2 Chemical Sensors -- 4.4 Optoelectronic and Photonic Applications -- 4.4.1 2D-0D Hybridization -- 4.4.2 2D-1D Hybridization -- 4.4.3 2D-3D Hybridization -- 4.5 Energy Applications -- 4.5.1 Application in Photocatalytic Water Splitting -- 4.5.2 Application in Rechargeable Batteries -- 4.5.3 Application in Supercapacitors -- 4.6 Conclusions -- References -- Chapter 5 The VdW Heterostructure Interface Physics -- 5.1 Band Alignment and Charge Transfer in VdWHs -- 5.2 Magnetic Coupling in VdWHs -- 5.2.1 Applications in Valleytronics -- 5.2.2 Applications in Spintronics -- 5.3 Moiré Pattern -- 5.3.1 Band Structure in Moiré Lattice -- 5.3.2 Flat Band-Introduced Superconductivity in Bilayer Graphene -- 5.3.3 Moiré Excitons -- 5.3.4 Moiré Lattice Topology -- 5.4 VdWHs for Protection -- 5.4.1 Introduction of Hexagonal Boron Nitride -- 5.4.2 Graphene Capsulated by h-BN -- 5.4.3 Transition Metal Dichalcogenides Capsulated by h-BN -- 5.4.4 Black Phosphorus Capsulated by h-BN -- 5.5 Characterization Techniques for VdWHs. |
5.5.1 Scanning Transmission Electron Microscopy for Characterization of Structural and Related Properties -- 5.5.2 Scanning Probe Microscopy for Characterization of Structural and Electrical Properties -- 5.5.3 Optical and Vibrational Spectroscopy for Characterization of Electron-, Exciton-, and Phonon-Related Properties -- References -- Chapter 6 The VdW Heterostructure Multi-field Coupling Effects -- 6.1 Introduction -- 6.2 The Multifield Coupling Effect Characterization for 2D Van der Waals Structures -- 6.2.1 The Multifield Microscopy Techniques on 2D VdW Structures -- 6.2.1.1 The Electric-Field-Integrated STM-STS Technique -- 6.2.1.2 The Thermal-Field-Integrated STM-STS Technique -- 6.2.1.3 The Multifield-Integrated |
|
|
|
|
|
|
|
|
TEM Technique -- 6.2.1.4 The Optical-Field-Integrated KPFM Technique -- 6.2.2 The Multifield Optical Spectroscopy Techniques on 2D VdW Structures -- 6.2.2.1 The TERS Technique Based on STM and Raman Spectroscopy -- 6.2.2.2 The S-SNOM Based on AFM -- 6.2.3 The Perspective of Multifield Integration Characterization for 2D VdW Structures -- 6.3 The Multifield Modulation for Electrical Properties of 2D Van der Waals Structures -- 6.3.1 Strain-Engineered Electrical Properties of 2D VdW Structures -- 6.3.2 Electric Field-Engineered Electrical Properties of 2D VdW Structures -- 6.3.3 Thermal-Engineered Electrical Properties of VdW Structures -- 6.4 The Multifield Modulation for Optical Properties of 2D Van der Waals Structures -- 6.4.1 Strain-Engineered Optical Properties of 2D VdW Structures -- 6.4.2 Electric-Engineered Optical Properties of 2D VdW Structures -- 6.4.3 Thermal-Engineered Optical Properties of VdW Structures -- References -- Chapter 7 VdW Heterostructure Electronics -- 7.1 Van der Waals PN Junctions -- 7.2 Van der Waals Metal-Semiconductor Junctions -- 7.3 Field-effect Transistor -- 7.3.1 Basic Structure. |
7.3.2 Advantage Characteristics -- 7.3.3 2D Dielectric Materials -- 7.4 Junction Field-Effect Transistor -- 7.4.1 Current-Voltage Features -- 7.4.2 Working Principle -- 7.4.3 Device Structure -- 7.4.4 Applications -- 7.5 Tunneling Field-Effect Transistor -- 7.5.1 The History of TFET -- 7.5.2 Mechanism of TFET -- 7.5.3 Application of TFET -- 7.6 Van der Waals Integration -- References -- Chapter 8 VdW Heterostructure Optoelectronics -- 8.1 Photodetectors -- 8.1.1 Photovoltaic Effect -- 8.1.2 Photoconductive Effect -- 8.1.3 Tunneling Effect -- 8.1.4 Photo-Thermoelectric Effect -- 8.1.5 Improvement Strategies -- 8.2 Light Emission -- 8.2.1 Light-Emitting Diodes -- 8.2.2 Lasering -- 8.2.3 Single Photon -- 8.3 Optical Modulators -- 8.3.1 All-Optical Modulators -- 8.3.2 Electro-Optic Modulators -- 8.3.3 Thermo-Optic Modulators -- References -- Chapter 9 VdW Heterostructure Electrochemical Applications -- 9.1 Solar Energy -- 9.2 Van der Waals Heterostructure Application in Hydrogen Energy -- 9.2.1 Producing Hydrogen by Water Photolysis -- 9.2.2 Producing Hydrogen by Water Electrolysis -- 9.3 Battery -- 9.3.1 Lithium-ion Batteries, Sodium-ion Batteries, Potassium-ion Batteries -- 9.3.2 Supercapacitors -- 9.4 Catalyst -- 9.5 Biotechnology -- 9.5.1 Biosensors -- 9.5.2 Tissue Engineering -- References -- Chapter 10 Perspective and Outlook -- 10.1 Overall Development Status of 2D Materials -- 10.1.1 Material Preparation: Scalability, Uniformity, and Reproducibility -- 10.1.2 Metrology -- 10.1.3 Construction of Heterostructure: Industry-Compatible Integration Process -- 10.2 Compatibility Between 2D Van der Waals Device Processing and Silicon Technology -- 10.2.1 Compatibility of 2D Van der Waals Device Integration with Traditional Silicon-Based Process -- 10.2.2 Differences Between 2D van der Waals Devices and Traditional Silicon-Based Processes. |
10.2.3 2D van der Waals Device Integration Beyond Silicon Technology -- 10.3 Promising Roadmap of Van der Waals Heterostructure Devices [Medium term: 5 years, Long term: 5-10 years] -- 10.4 Promising Roadmap of Optoelectronic Device -- 10.5 Conclusion and Prospect -- References -- Index -- EULA. |
|
|
|
|
|
| |