| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNICASRAV0029723 |
|
|
Titolo |
Renato Birolli / introduzione di Giulio Carlo Argan ; saggio di Vittorio Fagone ; scritti di Renato Birolli ; e inoltre testi di Giulio Carlo Argan ... [et al.] ; catalogo critico di Massimo Mussini |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Parma, : Università di Parma [etc.], 1976 |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Collana |
|
Quaderni / Università di Parma, Centro studi e archivio della comunicazione ; 34 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Birolli, Renato - Cataloghi di esposizioni |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Catalogo della mostra, Parma, 1976 |
Sul front.: col patrocinio della Regione Emilia-Romagna. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910154743403321 |
|
|
Autore |
Boutet de Monvel L. |
|
|
Titolo |
The Spectral Theory of Toeplitz Operators. (AM-99), Volume 99 / / L. Boutet de Monvel, Victor Guillemin |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Princeton, NJ : , : Princeton University Press, , [2016] |
|
©1981 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (168 pages) |
|
|
|
|
|
|
Collana |
|
Annals of Mathematics Studies ; ; 240 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Toeplitz operators |
Spectral theory (Mathematics) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Frontmatter -- TABLE OF CONTENTS -- §1. Introduction -- §2. GENERALIZED TOEPLITZ OPERATORS -- §3. FOURIER INTEGRAL OPERATORS OF HERMITE TYPE -- §4. THE METAPLECTIC REPRESENTATION -- §5. METALINEAR AND METAPLECTIC STRUCTURES ON MANIFOLDS -- §6. ISOTROPIC SUBSPACES OF SYMPLECTIC VECTOR SPACES -- §7. THE COMPOSITION THEOREM -- §8. THE PROOF OF THEOREM 7.5 -- §9. PULL-BACKS, PUSH-FORWARDS AND EXTERIOR TENSOR PRODUCTS -- §10. THE TRANSPORT EQUATION -- §11. SYMBOLIC PROPERTIES OF TOEPLITZ OPERATORS -- §12. THE TRACE FORMULA -- §13. SPECTRAL PROPERTIES OF TOEPLITZ OPERATORS -- §14. THE HILBERT POLYNOMIAL -- §15. SOME CONCLUDING REMARKS -- BIBLIOGRAPHY -- APPENDIX: QUANTIZED CONTACT STRUCTURES -- Backmatter |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
The theory of Toeplitz operators has come to resemble more and more in recent years the classical theory of pseudodifferential operators. For instance, Toeplitz operators possess a symbolic calculus analogous to the usual symbolic calculus, and by symbolic means one can construct parametrices for Toeplitz operators and create new Toeplitz operators out of old ones by functional operations.If P is a self-adjoint pseudodifferential operator on a compact manifold with an elliptic symbol that is of order greater than zero, then it has a discrete |
|
|
|
|
|
|
|
|
|
|
spectrum. Also, it is well known that the asymptotic behavior of its eigenvalues is closely related to the behavior of the bicharacteristic flow generated by its symbol.It is natural to ask if similar results are true for Toeplitz operators. In the course of answering this question, the authors explore in depth the analogies between Toeplitz operators and pseudodifferential operators and show that both can be viewed as the "quantized" objects associated with functions on compact contact manifolds. |
|
|
|
|
|
| |