1.

Record Nr.

UNINA9910154743003321

Autore

Kauffman Louis H.

Titolo

Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds (AM-134), Volume 134 / / Louis H. Kauffman, Sostenes Lins

Pubbl/distr/stampa

Princeton, NJ : , : Princeton University Press, , [2016]

©1994

ISBN

1-4008-8253-2

Descrizione fisica

1 online resource (308 pages) : illustrations

Collana

Annals of Mathematics Studies ; ; 315

Disciplina

514/.224

Soggetti

Knot theory

Three-manifolds (Topology)

Invariants

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Frontmatter -- Contents -- Chapter 1. Introduction -- Chapter 2. Bracket Polynomial, Temperley-Lieb Algebra -- Chapter 3. Jones-Wenzl Projectors -- Chapter 4. The 3-Vertex -- Chapter 5. Properties of Projectors and 3-Vertices -- Chapter 6. θ-Evaluations -- Chapter 7. Recoupling Theory Via Temperley-Lieb Algebra -- Chapter 8. Chromatic Evaluations and the Tetrahedron -- Chapter 9. A Summary of Recoupling Theory -- Chapter 10. A 3-Manifold Invariant by State Summation -- Chapter 11. The Shadow World -- Chapter 12. The Witten-Reshetikhin- Turaev Invariant -- Chapter 13. Blinks ↦ 3-Gems: Recognizing 3-Manifolds -- Chapter 14. Tables of Quantum Invariants -- Bibliography -- Index

Sommario/riassunto

This book offers a self-contained account of the 3-manifold invariants arising from the original Jones polynomial. These are the Witten-Reshetikhin-Turaev and the Turaev-Viro invariants. Starting from the Kauffman bracket model for the Jones polynomial and the diagrammatic Temperley-Lieb algebra, higher-order polynomial invariants of links are constructed and combined to form the 3-manifold invariants. The methods in this book are based on a recoupling theory for the Temperley-Lieb algebra. This recoupling theory is a q-deformation of the SU(2) spin networks of Roger Penrose.



The recoupling theory is developed in a purely combinatorial and elementary manner. Calculations are based on a reformulation of the Kirillov-Reshetikhin shadow world, leading to expressions for all the invariants in terms of state summations on 2-cell complexes. Extensive tables of the invariants are included. Manifolds in these tables are recognized by surgery presentations and by means of 3-gems (graph encoded 3-manifolds) in an approach pioneered by Sostenes Lins. The appendices include information about gems, examples of distinct manifolds with the same invariants, and applications to the Turaev-Viro invariant and to the Crane-Yetter invariant of 4-manifolds.