|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910154743003321 |
|
|
Autore |
Kauffman Louis H. |
|
|
Titolo |
Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds (AM-134), Volume 134 / / Louis H. Kauffman, Sostenes Lins |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Princeton, NJ : , : Princeton University Press, , [2016] |
|
©1994 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (308 pages) : illustrations |
|
|
|
|
|
|
Collana |
|
Annals of Mathematics Studies ; ; 315 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Knot theory |
Three-manifolds (Topology) |
Invariants |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Frontmatter -- Contents -- Chapter 1. Introduction -- Chapter 2. Bracket Polynomial, Temperley-Lieb Algebra -- Chapter 3. Jones-Wenzl Projectors -- Chapter 4. The 3-Vertex -- Chapter 5. Properties of Projectors and 3-Vertices -- Chapter 6. θ-Evaluations -- Chapter 7. Recoupling Theory Via Temperley-Lieb Algebra -- Chapter 8. Chromatic Evaluations and the Tetrahedron -- Chapter 9. A Summary of Recoupling Theory -- Chapter 10. A 3-Manifold Invariant by State Summation -- Chapter 11. The Shadow World -- Chapter 12. The Witten-Reshetikhin- Turaev Invariant -- Chapter 13. Blinks ↦ 3-Gems: Recognizing 3-Manifolds -- Chapter 14. Tables of Quantum Invariants -- Bibliography -- Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book offers a self-contained account of the 3-manifold invariants arising from the original Jones polynomial. These are the Witten-Reshetikhin-Turaev and the Turaev-Viro invariants. Starting from the Kauffman bracket model for the Jones polynomial and the diagrammatic Temperley-Lieb algebra, higher-order polynomial invariants of links are constructed and combined to form the 3-manifold invariants. The methods in this book are based on a recoupling theory for the Temperley-Lieb algebra. This recoupling theory is a q-deformation of the SU(2) spin networks of Roger Penrose. |
|
|
|
|