1.

Record Nr.

UNINA9910150209303321

Autore

Haykin Simon S. <1931->

Titolo

Adaptive filter theory / / Simon Haykin ; international edition contributions by Telagarapu Prabhakar

Pubbl/distr/stampa

Upper Saddle River : , : Pearson, , [2014]

©2014

ISBN

0-273-77572-3

Edizione

[Fifth edition, International edition.]

Descrizione fisica

1 online resource (912 pages) : illustrations (some color)

Collana

Always learning

Disciplina

621.3815324

Soggetti

Adaptive filters

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Cover -- Title -- Contents -- Preface -- Acknowledgments -- Background and Preview -- 1. The Filtering Problem -- 2. Linear Optimum Filters -- 3. Adaptive Filters -- 4. Linear Filter Structures -- 5. Approaches to the Development of Linear Adaptive Filters -- 6. Adaptive Beamforming -- 7. Four Classes of Applications -- 8. Historical Notes -- Chapter 1 Stochastic Processes and Models -- 1.1 Partial Characterization of a Discrete-Time Stochastic Process -- 1.2 Mean Ergodic Theorem -- 1.3 Correlation Matrix -- 1.4 Correlation Matrix of Sine Wave Plus Noise -- 1.5 Stochastic Models -- 1.6 Wold Decomposition -- 1.7 Asymptotic Stationarity of an Autoregressive Process -- 1.8 Yule-Walker Equations -- 1.9 Computer Experiment: Autoregressive Process of Order Two -- 1.10 Selecting the Model Order -- 1.11 Complex Gaussian Proceses -- 1.12 Power Spectral Density -- 1.13 Propert ies of Power Spectral Density -- 1.14 Transmission of a Stationary Process Through a Linear Filter -- 1.15 Cramér Spectral Representation for a Stationary Process -- 1.16 Power Spectrum Estimation -- 1.17 Other Statistical Characteristics of a Stochastic Process -- 1.18 Polyspectra -- 1.19 Spectral-Correlation Density -- 1.20 Summary and Discussion -- Problems -- Chapter 2 Wiener Filters -- 2.1 Linear Optimum Filtering: Statement of the Problem -- 2.2 Principle of Orthogonality -- 2.3 Minimum Mean-Square Error -- 2.4 Wiener-Hopf Equations -- 2.5 Error-Performance Surface -- 2.6 Multiple Linear Regression Model -- 2.7 Example -- 2.8 Linearly



Constrained Minimum-Variance Filter -- 2.9 Generalized Sidelobe Cancellers -- 2.10 Summary and Discussion -- Problems -- Chapter 3 Linear Prediction -- 3.1 Forward Linear Prediction -- 3.2 Backward Linear Prediction -- 3.3 Levinson-Durbin Algorithm -- 3.4 Properties of Prediction-Error Filters -- 3.5 Schur-Cohn Test.

3.6 Autoregressive Modeling of a Stationary Stochastic Process -- 3.7 Cholesky Factorization -- 3.8 Lattice Predictors -- 3.9 All-Pole, All-Pass Lattice Filter -- 3.10 Joint-Process Estimation -- 3.11 Predictive Modeling of Speech -- 3.12 Summary and Discussion -- Problems -- Chapter 4 Method of Steepest Descent -- 4.1 Basic Idea of the Steepest-Descent Algorithm -- 4.2 The Steepest-Descent Algorithm Applied to the Wiener Filter -- 4.3 Stability of the Steepest-Descent Algorithm -- 4.4 Example -- 4.5 The Steepest-Descent Algorithm Viewed as a Deterministic Search Method -- 4.6 Virtue and Limitation of the Steepest-Descent Algorithm -- 4.7 Summary and Discussion -- Problems -- Chapter 5 Method of Stochastic Gradient Descent -- 5.1 Principles of Stochastic Gradient Descent -- 5.2 Application 1: Least-Mean-Square (LMS) Algorithm -- 5.3 Application 2: Gradient-Adaptive Lattice Filtering Algorithm -- 5.4 Other Applications of Stochastic Gradient Descent -- 5.5 Summary and Discussion -- Problems -- Chapter 6 The Least-Mean-Square (LMS) Algorithm -- 6.1 Signal-Flow Graph -- 6.2 Optimality Considerations -- 6.3 Applications -- 6.4 Statistical Learning Theory -- 6.5 Transient Behavior and Convergence Considerations -- 6.6 Efficiency -- 6.7 Computer Experiment on Adaptive Prediction -- 6.8 Computer Experiment on Adaptive Equalization -- 6.9 Computer Experiment on a Minimum-Variance Distortionless-Response Beamformer -- 6.10 Summary and Discussion -- Problems -- Chapter 7 Normalized Least-Mean-Square (LMS) Algorithm and Its Generalization -- 7.1 Normalized LMS Algorithm: The Solution to a Constrained Optimization Problem -- 7.2 Stability of the Normalized LMS Algorithm -- 7.3 Step-Size Control for Acoustic Echo Cancellation -- 7.4 Geometric Considerations Pertaining to the Convergence Process for Real-Valued Data -- 7.5 Affine Projection Adaptive Filters.

7.6 Summary and Discussion -- Problems -- Chapter 8 Block-Adaptive Filters -- 8.1 Block-Adaptive Filters: Basic Ideas -- 8.2 Fast Block LMS Algorithm -- 8.3 Unconstrained Frequency-Domain Adaptive Filters -- 8.4 Self-Orthogonalizing Adaptive Filters -- 8.5 Computer Experiment on Adaptive Equalization -- 8.6 Subband Adaptive Filters -- 8.7 Summary and Discussion -- Problems -- Chapter 9 Method of Least-Squares -- 9.1 Statement of the Linear Least-Squares Estimation Problem -- 9.2 Data Windowing -- 9.3 Principle of Orthogonality Revisited -- 9.4 Minimum Sum of Error Squares -- 9.5 Normal Equations and Linear Least-Squares Filters -- 9.6 Time-Average Correlation Matrix Φ -- 9.7 Reformulation of the Normal Equations in Terms of Data Matrices -- 9.8 Properties of Least-Squares Estimates -- 9.9 Minimum-Variance Distortionless Response (MVDR) Spectrum Estimation -- 9.10 Regularized MVDR Beamforming -- 9.11 Singular-Value Decomposition -- 9.12 Pseudoinverse -- 9.13 Interpretation of Singular Values and Singular Vectors -- 9.14 Minimum-Norm Solution to the Linear Least-Squares Problem -- 9.15 Normalized LMS Algorithm Viewed as the Minimum-Norm Solution to an Underdetermined Least-Squares Estimation Problem -- 9.16 Summary and Discussion -- Problems -- Chapter 10 The Recursive Least-Squares (RLS) Algorithm -- 10.1 Some Preliminaries -- 10.2 The Matrix Inversion Lemma -- 10.3 The Exponentially Weighted RLS Algorithm -- 10.4 Selection of the Regularization Parameter -- 10.5 Updated Recursion for the Sum of Weighted Error Squares -- 10.6 Example: Single-Weight Adaptive Noise



Canceller -- 10.7 Statistical Learning Theory -- 10.8 Efficiency -- 10.9 Computer Experiment on Adaptive Equalization -- 10.10 Summary and Discussion -- Problems -- Chapter 11 Robustness -- 11.1 Robustness, Adaptation, and Disturbances.

11.2 Robustness: Preliminary Considerations Rooted in H∞ Optimization -- 11.3 Robustness of the LMS Algorithm -- 11.4 Robustness of the RLS Algorithm -- 11.5 Comparative Evaluations of the LMS and RLS Algorithms from the Perspective of Robustness -- 11.6 Risk-Sensitive Optimality -- 11.7 Trade-Offs Between Robustness and Efficiency -- 11.8 Summary and Discussion -- Problems -- Chapter 12 Finite-Precision Effects -- 12.1 Quantization Errors -- 12.2 Least-Mean-Square (LMS) Algorithm -- 12.3 Recursive Least-Squares (RLS) Algorithm -- 12.4 Summary and Discussion -- Problems -- Chapter 13 Adaptation in Nonstationary Environments -- 13.1 Causes and Consequences of Nonstationarity -- 13.2 The System Identification Problem -- 13.3 Degree of Nonstationarity -- 13.4 Criteria for Tracking Assessment -- 13.5 Tracking Performance of the LMS Algorithm -- 13.6 Tracking Performance of the RLS Algorithm -- 13.7 Comparison of the Tracking Performance of LMS and RLS Algorithms -- 13.8 Tuning of Adaptation Parameters -- 13.9 Incremental Delta-Bar-Delta (IDBD) Algorithm -- 13.10 Autostep Method -- 13.11 Computer Experiment: Mixture of Stationary and Nonstationary Environmental Data -- 13.12 Summary and Discussion -- Problems -- Chapter 14 Kalman Filters -- 14.1 Recursive Minimum Mean-Square Estimation for Scalar Random Variables -- 14.2 Statement of the Kalman Filtering Problem -- 14.3 The Innovations Process -- 14.4 Estimation of the State Using the Innovations Process -- 14.5 Filtering -- 14.6 Initial Conditions -- 14.7 Summary of the Kalman Filter -- 14.8 Optimality Criteria for Kalman Filtering -- 14.9 Kalman Filter as the Unifying Basis for RLS Algorithms -- 14.10 Covariance Filtering Algorithm -- 14.11 Information Filtering Algorithm -- 14.12 Summary and Discussion -- Problems -- Chapter 15 Square-Root Adaptive Filtering Algorithms.

15.1 Square-Root Kalman Filters -- 15.2 Building Square-Root Adaptive Filters on the Two Kalman Filter Variants -- 15.3 QRD-RLS Algorithm -- 15.4 Adaptive Beamforming -- 15.5 Inverse QRD-RLS Algorithm -- 15.6 Finite-Precision Effects -- 15.7 Summary and Discussion -- Problems -- Chapter 16 Order-Recursive Adaptive Filtering Algorithm -- 16.1 Order-Recursive Adaptive Filters Using Least-Squares Estimation: An Overview -- 16.2 Adaptive Forward Linear Prediction -- 16.3 Adaptive Backward Linear Prediction -- 16.4 Conversion Factor -- 16.5 Least-Squares Lattice (LSL) Predictor -- 16.6 Angle-Normalized Estimation Errors -- 16.7 First-Order State-Space Models for Lattice Filtering -- 16.8 QR-Decomposition-Based Least-Squares Lattice (QRD-LSL) Filters -- 16.9 Fundamental Properties of the QRD-LSL Filter -- 16.10 Computer Experiment on Adaptive Equalization -- 16.11 Recursive (LSL) Filters Using A Posteriori Estimation Errors -- 16.12 Recursive LSL Filters Using A Priori Estimation Errors with Error Feedback -- 16.13 Relation Between Recursive LSL and RLS Algorithms -- 16.14 Finite-Precision Effects -- 16.15 Summary and Discussion -- Problems -- Chapter 17 Blind Deconvolution -- 17.1 Overview of Blind Deconvolution -- 17.2 Channel Identifiability Using Cyclostationary Statistics -- 17.3 Subspace Decomposition for Fractionally Spaced Blind Identification -- 17.4 Bussgang Algorithm for Blind Equalization -- 17.5 Extension of the Bussgang Algorithm to Complex Baseband Channels -- 17.6 Special Cases of the Bussgang Algorithm -- 17.7 Fractionally Spaced Bussgang Equalizers -- 17.8 Estimation of Unknown Probability Distribution Function of Signal Source -- 17.9 Summary and Discussion --



Problems -- Epilogue -- 1. Robustness, Efficiency, and Complexity -- 2. Kernel-Based Nonlinear Adaptive Filtering -- Appendix A Theory of Complex Variables.

A.1 Cauchy-Riemann Equations.

Sommario/riassunto

For courses in Adaptive Filters.  Haykin examines both the mathematical theory behind various linear adaptive filters and the elements of supervised multilayer perceptrons. In its fifth edition, this highly successful book has been updated and refined to stay current with the field and develop concepts in as unified and accessible a manner as possible.