1.

Record Nr.

UNINA9910149152503321

Titolo

回路理論 / /  渡部英二著

Pubbl/distr/stampa

東京, : オーム社, 2012.10

東京 : , : オーム社, , 2012

ISBN

4-274-83144-2

Descrizione fisica

1 online resource (160 pages)

Collana

基本を学ぶ

Classificazione

541.1

Altri autori (Persone)

渡部英二

Soggetti

電気回路

Lingua di pubblicazione

Giapponese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

文献: p147

Nota di contenuto

表紙 -- 発行にあたって -- はしがき -- 目次 -- 1章 回路と回路素子 -- 1 回路と信号処理 -- 2 電源と回路素子 -- 3 回路とシステム -- 4 回路の基本的性質 -- 5 過渡状態と定常状態 -- ●練習問題 -- 2章 線形微分方程式と回路の応答 -- 1 RCおよびRL回路の時間応答 -- 2 RLC回路の時間応答 -- ●練習問題 -- 3章 ラプラス変換と回路の応答 -- 1 ヘビサイドの演算子法 -- 2 ラプラス変換の導入 -- 3 ラプラス変換の性質 -- 4 単位インパルス信号 -- 5 繰返し信号のラプラス変換 -- 6 微分方程式とラプラス変換 -- 7 回路関数とインパルス応答 -- 8 ラプラス逆変換 -- 9 ラプラス変換を用いる過渡解析 -- ●練習問題 -- 4章 回路関数 -- 1 駆動点関数と伝達関数 -- 2 正弦波定常応答と周波数特性 -- 3 簡単な回路の回路関数 -- 4 2ポート回路の動作量 -- 5 回路の安定性 -- 6 正実関数 -- 7 リアクタンス2ポート回路の電力伝送 -- ●練習問題 -- 5章 フーリエ変換と回路の応答 -- 1 フーリエ変換 -- 2 フーリエ級数 -- 3 デルタ関数とフーリエ変換 -- 4 線形回路の応答 -- ●練習問題 -- 付録 -- 1 2ポートパラメータ -- 練習問題解答・解説 -- 参考文献 -- 索引 -- 奥付.



2.

Record Nr.

UNINA9910969239003321

Titolo

Bayesian phylogenetics : methods, algorithms, and applications / / edited by Ming-Hui Chen, Lynn Kuo, and Paul O. Lewis, University of Connecticut Storrs, USA

Pubbl/distr/stampa

Boca Raton : , : CRC Press, , [2014]

©2014

ISBN

1-04-021919-5

0-429-18426-3

1-4665-0079-4

Edizione

[1st ed.]

Descrizione fisica

1 online resource (391 p.)

Collana

Chapman and Hall/CRC Mathematical and Computational Biology Series

Disciplina

576.8/8

Soggetti

Phylogeny

Biometry

Molecular genetics

Bayesian statistical decision theory

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Front Cover; Contents; List of Figures; List of Tables; Preface; Editors; Contributors; Chapter 1: Bayesian phylogenetics: methods, computational algorithms, and applications; Chapter 2: Priors in Bayesian phylogenetics; Chapter 3: Inated density ratio (IDR) method for estimating marginal likelihoods in Bayesian phylogenetics; Chapter 4: Bayesian model selection in phylogenetics and genealogy-based population genetics; Chapter 5: Variable tree topology stepping-stone marginal likelihood estimation; Chapter 6: Consistency of marginal likelihood estimation when topology varies

Chapter 7: Bayesian phylogeny analysisChapter 8: SMC (sequential Monte Carlo) for Bayesian phylogenetics; Chapter 9: Population model comparison using multi-locus datasets; Chapter 10: Bayesian methods in the presence of recombination; Chapter 11: Bayesian nonparametric phylodynamics; Chapter 12: Sampling and summary statistics of endpoint-conditioned paths in DNA sequence evolution; Chapter 13: Bayesian inference of species divergence times; Bibliography; Back



Cover

Sommario/riassunto

Offering a rich diversity of models, Bayesian phylogenetics allows evolutionary biologists, systematists, ecologists, and epidemiologists to obtain answers to very detailed phylogenetic questions. Suitable for graduate-level researchers in statistics and biology, Bayesian Phylogenetics: Methods, Algorithms, and Applications presents a snapshot of current trends in Bayesian phylogenetic research. Encouraging interdisciplinary research, this book introduces state-of-the-art phylogenetics to the Bayesian statistical community and, likewise, presents state-of-the-