|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910148829103321 |
|
|
Autore |
Gorbenko Victor |
|
|
Titolo |
From QCD Flux Tubes to Gravitational S-matrix and Back / / by Victor Gorbenko |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2017.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XII, 133 p. 32 illus., 24 illus. in color.) |
|
|
|
|
|
|
Collana |
|
Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-5053 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Quantum field theory |
String theory |
Gravitation |
Cosmology |
Quantum Field Theories, String Theory |
Classical and Quantum Gravitation, Relativity Theory |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"Doctoral Thesis accepted by New York University, New York, NY, USA." |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references at the end of each chapters. |
|
|
|
|
|
|
Nota di contenuto |
|
Effective Field Theory for Relativistic Strings -- Worldsheet S-matrix -- Simplest Quantum Gravity -- Natural Tuning.-Flux Tube Spectrum from Thermodynamic Bethe Ansatz. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This thesis studies various aspects of non-critical strings both as an example of a non-trivial and solvable model of quantum gravity and as a consistent approximation to the confining flux tube in quantum chromodynamics (QCD). It proposes and develops a new technique for calculating the finite volume spectrum of confining flux tubes. This technique is based on approximate integrability and it played a game-changing role in the study of confining strings. Previously, a theoretical interpretation of available high quality lattice data was impossible, because the conventional perturbative expansion for calculating the string spectra was badly asymptotically diverging in the regime accessible on the lattice. With the new approach, energy levels can be calculated for much shorter flux tubes than was previously possible, allowing for a quantitative comparison with existing lattice data. The |
|
|
|
|