|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910146318103321 |
|
|
Autore |
Unterberger André |
|
|
Titolo |
Quantization and Non-holomorphic Modular Forms / / by André Unterberger |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2000 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2000.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (X, 258 p.) |
|
|
|
|
|
|
Collana |
|
Lecture Notes in Mathematics, , 0075-8434 ; ; 1742 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Number theory |
Number Theory |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and indexes. |
|
|
|
|
|
|
Nota di contenuto |
|
Distributions associated with the non-unitary principal series -- Modular distributions -- The principal series of SL(2, ?) and the Radon transform -- Another look at the composition of Weyl symbols -- The Roelcke-Selberg decomposition and the Radon transform -- Recovering the Roelcke-Selberg coefficients of a function in L 2(???) -- The “product” of two Eisenstein distributions -- The roelcke-selberg expansion of the product of two eisenstein series: the continuous part -- A digression on kloosterman sums -- The roelcke-selberg expansion of the product of two eisenstein series: the discrete part -- The expansion of the poisson bracket of two eisenstein series -- Automorphic distributions on ?2 -- The Hecke decomposition of products or Poisson brackets of two Eisenstein series -- A generating series of sorts for Maass cusp-forms -- Some arithmetic distributions -- Quantization, products and Poisson brackets -- Moving to the forward light-cone: the Lax-Phillips theory revisited -- Automorphic functions associated with quadratic PSL(2, ?)-orbits in P 1(?) -- Quadratic orbits: a dual problem. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This is a new approach to the theory of non-holomorphic modular forms, based on ideas from quantization theory or pseudodifferential analysis. Extending the Rankin-Selberg method so as to apply it to the calculation of the Roelcke-Selberg decomposition of the product of two Eisenstein series, one lets Maass cusp-forms appear as residues of |
|
|
|
|
|
|
|
|
|
|
simple, Eisenstein-like, series. Other results, based on quantization theory, include a reinterpretation of the Lax-Phillips scattering theory for the automorphic wave equation, in terms of distributions on R2 automorphic with respect to the linear action of SL(2,Z). |
|
|
|
|
|
| |