|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910146306203321 |
|
|
Titolo |
Model theory and algebraic geometry : an introduction to E. Hrushovski's proof of the geometric Mordell-Lang conjecture / / Elisabeth Bouscaren, editor |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin ; ; Heidelberg : , : Springer Verlag, , [1998] |
|
©1998 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 1998.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XVI, 216 p.) |
|
|
|
|
|
|
Collana |
|
Lecture Notes in Mathematics, , 0075-8434 ; ; 1696 |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Arithmetical algebraic geometry |
Model theory |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references at the end of each chapters and index. |
|
|
|
|
|
|
|
|
Nota di contenuto |
|
to model theory -- to stability theory and Morley rank -- Omega-stable groups -- Model theory of algebraically closed fields -- to abelian varieties and the Mordell-Lang conjecture -- The model-theoretic content of Lang’s conjecture -- Zariski geometries -- Differentially closed fields -- Separably closed fields -- Proof of the Mordell-Lang conjecture for function fields -- Proof of Manin’s theorem by reduction to positive characteristic. |
|
|
|
|
|
|
|