|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910146285603321 |
|
|
Autore |
Ghrist Robert W. <1969-> |
|
|
Titolo |
Knots and links in three-dimensional flows / / Robert W. Ghrist, Philip J. Holmes, and Michael C. Sullivan |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin, Germany ; ; New York, New York : , : Springer-Verlag, , [1997] |
|
©1997 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 1997.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (X, 214 p.) |
|
|
|
|
|
|
Collana |
|
Lecture Notes in Mathematics, , 0075-8434 ; ; 1654 |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di contenuto |
|
Prerequisites -- Templates -- Template theory -- Bifurcations -- Invariants -- Concluding remarks. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
The closed orbits of three-dimensional flows form knots and links. This book develops the tools - template theory and symbolic dynamics - needed for studying knotted orbits. This theory is applied to the problems of understanding local and global bifurcations, as well as the embedding data of orbits in Morse-smale, Smale, and integrable Hamiltonian flows. The necesssary background theory is sketched; however, some familiarity with low-dimensional topology and differential equations is assumed. |
|
|
|
|
|
|
|
| |