1.

Record Nr.

UNINA9910146219203321

Autore

Valori Furia

Titolo

La polemica di Hegel con Gustav Hugo / / Furia Valori ; in appendice i testi

Pubbl/distr/stampa

Roma, : Cadmo, 1984

ISBN

88-7923-121-9

Descrizione fisica

134 p

Disciplina

193

340

Soggetti

Law - Philosophy

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Georg Wilhelm Friedrich Hegel (1770-1831); G. Hugo (1764-1844).



2.

Record Nr.

UNINA9910896525603321

Autore

Luo Albert C. J

Titolo

Two-dimensional Two Product Cubic Systems, Vol. III : Self-linear and Crossing Quadratic Product Vector Fields / / by Albert C. J. Luo

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024

ISBN

3-031-59559-9

Edizione

[1st ed. 2024.]

Descrizione fisica

1 online resource (292 pages)

Disciplina

515.63

Soggetti

Dynamics

Nonlinear theories

Mechanics, Applied

Multibody systems

Vibration

Algebra, Universal

Plasma waves

Applied Dynamical Systems

Engineering Mechanics

Multibody Systems and Mechanical Vibrations

General Algebraic Systems

Waves, instabilities and nonlinear plasma dynamics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Sommario/riassunto

This book is the eleventh of 15 related monographs on Cubic Systems, examines self-linear and crossing-quadratic product systems. It discusses the equilibrium and flow singularity and bifurcations, The double-inflection saddles featured in this volume are the appearing bifurcations for two connected parabola-saddles, and also for saddles and centers. The parabola saddles are for the appearing bifurcations of saddle and center. The inflection-source and sink flows are the appearing bifurcations for connected hyperbolic and hyperbolic-secant flows. Networks of higher-order equilibriums and flows are presented. For the network switching, the inflection-sink and source infinite-



equilibriums exist, and parabola-source and sink infinite-equilibriums are obtained. The equilibrium networks with connected hyperbolic and hyperbolic-secant flows are discussed. The inflection-source and sink infinite-equilibriums are for the switching bifurcation of two equilibrium networks. Develops a theory of nonlinear dynamics and singularity of crossing-linear and self-quadratic product systems; Presents networks of singular, simple center and saddle with hyperbolic flows in same structure product-cubic systems; Reveals s network switching bifurcations through hyperbolic, parabola, circle sink and other parabola-saddles.