1.

Record Nr.

UNINA9910145258503321

Autore

German Randall M. <1946->

Titolo

Mathematical relations in particulate materials processing [[electronic resource] ] : ceramics, powder metals, cermets, carbides, hard materials, and minerals / / Randall M. German, Seong Jin Park

Pubbl/distr/stampa

Hoboken, NJ, : Wiley, c2008

ISBN

1-282-68618-6

9786612686184

0-470-37008-4

0-470-36872-1

Descrizione fisica

1 online resource (455 p.)

Collana

Wiley series on processing of engineering materials

Altri autori (Persone)

ParkSeong Jin <1968->

Disciplina

620.112

671.3/7

Soggetti

Powder metallurgy

Powder metallurgy - Mathematical models

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references (p. 409-419) and index.

Nota di contenuto

MATHEMATICAL RELATIONS IN PARTICULATE MATERIALS PROCESSING; CONTENTS; Foreword; About the Authors; A; Abnormal Grain Growth; Abrasive Wear-See Friction and Wear Testing; Acceleration of Free-settling Particles; Activated Sintering, Early-stage Shrinkage; Activation Energy-See Arrhenius Relation; Adsorption-See BET Specific Surface Area; Agglomerate Strength; Agglomeration Force; Agglomeration of Nanoscale Particles-See Nanoparticle Agglomeration; Andreasen Size Distribution; Apparent Diffusivity; Archard Equation; Archimedes Density; Arrhenius Relation

Atmosphere Moisture Content-See Dew PointAtmosphere-stabilized Porosity-See Gas-generated Final Pores; Atomic Flux in Vacuum Sintering; Atomic-size Ratio in Amorphous Metals; Atomization Spheroidization Time-See Spheroidization Time; Atomization Time-See Solidification Time; Average Compaction Pressure-See Mean Compaction Pressure; Average Particle Size-See Mean Particle Size; Avrami Equation; B; Ball Milling-See Jar Milling; Bearing Strength; Bell



Curve-See Gaussian Distribution; Bending-beam Viscosity; Bending Test; BET Equivalent Spherical-particle Diameter; BET Specific Surface Area

Bimodal Powder PackingBimodal Powder Sintering; Binder Burnout-See Polymer Pyrolysis; Binder (Mixed Polymer) Viscosity; Bingham Model-See Viscosity Model for Injection-molding Feedstock; Bingham Viscous-flow Model; Boltzmann Statistics-See Arrhenius Relation; Bond Number; Bragg's Law; Brazilian Test; Breakage Model; Brinell Hardness; Brittle Material Strength Distribution-See Weibull Distribution; Broadening; Brownian Motion; Bubble Point-See Washburn Equation; Bulk Transport Sintering-See Sintering Shrinkage and Surface-area Reduction Kinetics; C

Cantilever-beam Test-See Bending-beam ViscosityCapillarity; Capillarity-induced Sintering-See Surface Curvature-Driven Mass Flow in Sintering; Capillary Pressure during Liquid-phase Sintering-See Mean Capillary Pressure; Capillary Rise-See Washburn Equation; Capillary Stress-See Laplace Equation; Case Carburization; Casson Model; Cemented-carbide Hardness; Centrifugal Atomization Droplet Size; Centrifugal Atomization Particle Size; Charles Equation for Milling; Chemically Activated Sintering-See Activated Sintering, Early-stage Shrinkage; Closed-pore Pressure-See Spherical-pore Pressure

Closed Porosity-See Open-pore ContentCoagulation Time; Coalescence-See Coagulation Time; Coalescence-induced Melting of Nanoscale Particles; Coalescence of Liquid Droplets-See Liquid-droplet Coalescence Time; Coalescence of Nanoscale Particles-See Nanoparticle Agglomeration; Coble Creep; Coefficient of Thermal Expansion-See Thermal Expansion Coefficient; Coefficient of Variation; Coercivity of Cemented Carbides-See Magnetic Coercivity Correlation in Cemented Carbides; Cold-spray Process-See Spray Deposition; Colloidal Packing Particle-size Distribution-See Andreasen Size Distribution

Combined-stage Model of Sintering

Sommario/riassunto

The only handbook of mathematical relations with a focus on particulate materials processing  The National Science Foundation estimates that over 35% of materials-related funding is now directed toward modeling. In part, this reflects the increased knowledge and the high cost of experimental work. However, currently there is no organized reference book to help the particulate materials community with sorting out various relations. This book fills that important need, providing readers with a quick-reference handbook for easy consultation. This one-of-a-kind handbook gives readers