|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910144741003321 |
|
|
Autore |
Guidry M. W (Michael Wayne) |
|
|
Titolo |
Gauge field theories : an introduction with applications / / Mike Guidry |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
ISBN |
|
1-281-76436-1 |
9786611764364 |
3-527-61735-3 |
3-527-61736-1 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (624 p.) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Gauge fields (Physics) |
Quantum field theory |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"A Wiley-Interscience publication." |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. 579-592) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
GAUGE FIELD THEORIES AN INTRODUCTION WITH APPLICATIONS; Contents; Part I: QUANTUM FIELD THEORY; 1. Relativistic Wave Equations; 1.1 Special Relativity and Spacetime; 1.2 Contravariant and Covariant Vectors; 1.3 Lorentz Transformations; 1.4 Klein-Gordon Equation; 1.5 Dirac Equation; 1.6 Prescriptions for Negative-Energy States; 1.7 Feynman Diagrams; 1.8 Loops, Trees, and Infinities; 1.9 Background and Further Reading; 2. Canonical Quantization of Local Field Theories; 2.1 Quantization in Discrete Mechanics; 2.2 General Properties of the Action; 2.3 Lagrangian Densities for Free Fields |
2.4 Quantization of the Real Scalar Field2.5 Quantization of a Complex Scalar Field; 2.6 Quantization of the Dirac Field; 2.7 Quantization of the Electromagnetic Field; 2.8 Noether's Theorem; 2.9 Interactions between Fields; 2.10 Background and Further Reading; 3. Perturbation Theory and Evaluation of the S-Matrix; 3.1 Interaction Representation; 3.2 Definition of the S-Matrix; 3.3 Interaction Picture Fourier Expansions; 3.4 Reduction by Wick's Theorem; 3.5 Example: Self-coupled Scalar Field; 3.6 Differential Cross Sections; 3.7 Example: Spinor Electrodynamics; 3.8 Graphs That Are Excluded |
3.9 Feynman Rules for Electrodynamics3.10 Background and Further |
|
|
|
|