| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990004776020403321 |
|
|
Autore |
Quintilianus, Marcus Fabius <ante 35/40> |
|
|
Titolo |
M. Fabii Quintiliani De institutione oratoria libri duodecim. Recisis quæ minus necessaria videbantur |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Oxonii : impensis J. Munday |
|
Londini : W.H. Lunn, 1809 ( (Oxonii) : typis J. Munday |
|
|
|
|
|
|
|
|
|
Titolo uniforme |
De institutione oratoria <in latino> |
|
|
|
|
|
Edizione |
[Editio nova studiosorum usibus accomodata et in plurimis locis optimorum librorum fide emendata. Curante Jacobo Ingram, S.T.B. Coll. Trin. Oxon. soc] |
|
|
|
|
|
|
|
Descrizione fisica |
|
XIII, [1], 384 p. ; 23 cm |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910144714103321 |
|
|
Autore |
Bohren Craig F. <1940-> |
|
|
Titolo |
Absorption and scattering of light by small particles / / Craig F. Bohren, Donald R. Huffman |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Weinheim, [Germany] : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2004 |
|
©2004 |
|
|
|
|
|
|
|
|
|
ISBN |
|
1-281-84326-1 |
9786611843267 |
0-471-05772-X |
3-527-61815-5 |
3-527-61816-3 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (546 p.) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Aerosols - Optical properties |
Light - Scattering |
Light absorption |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references at the end of each chapters and index. |
|
|
|
|
|
|
|
|
Nota di contenuto |
|
Absorption and Scattering of Light by Small Particles; Contents; PART 1- BASIC THEORY; Chapter 1. Introduction; 1.1 Physical Basis for Scattering and Absorption; 1.2 Scattering by Fluctuations and by Particles; 1.3 Physics of Scattering by a Single Particle; 1.4 Collections of Particles; 1.5 The Direct and Inverse Problem; Notes and Comments; Chapter 2. Electromagnetic Theory; 2.1 Field Vectors and the Maxwell Equations; 2.2 Time-Harmonic Fields; 2.3 Frequency-Dependent Phenomenological Coefficients; 2.4 Spatial Dispersion; 2.5 Poynting Vector; 2.6 Plane-Wave Propagation in Unbounded Media |
2.7 Reflection and Transmission at a Plane Boundary2.8 Reflection and Transmission by a Slab; 2.9 Experimental Determination of Optical Constants; 2.10 The Analogy Between a Slab and a Particle; 2.11 Polarization; Notes and Comments; Chapter 3. Absorption and Scattering by an Arbitrary Particle; 3.1 General Formulation of the Problem; 3.2 The Amplitude Scattering Matrix; 3.3 Scattering Matrix; |
|
|
|
|
|
|
|
|
|
|
|
3.4 Extinction, Scattering, and Absorption; Notes and Comments; Chapter 4. Absorption and Scattering by a Sphere; 4.1 Solutions to the Vector Wave Equations |
4.2 Expansion of a Plane Wave in Vector Spherical Harmonics4.3 The Internal and Scattered Fields; 4.4 Cross Sections and Matrix Elements; 4.5 Asymmetry Parameter and Radiation Pressure; 4.6 Radar Backscattering Cross Section; 4.7 Thermal Emission; 4.8 Computation of Scattering Coefficients and Cross Sections; Notes and Comments; Chapter 5. Particles Small Compared with the Wavelength; 5.1 Sphere Small Compared with the Wavelength; 5.2 The Electrostatics Approximation; 5.3 Ellipsoid in the Electrostatics Approximation; 5.4 Coated Ellipsoid; 5.5 The Polarizability Tensor; 5.6 Anisotropic Sphere |
5.7 Scattering MatrixChapter 6. Rayleigh-Cans Theory; 6.1 Amplitude Scattering Matrix Elements; 6.2 Homogeneous Sphere; 6.3 Finite Cylinder; Notes and Comments; Chapter 7. Geometrical Optics; 7.1 Absorption and Scattering Cross Sections; 7.2 Angular Distribution of the Scattered Light: Rainbow Angles; 7.3 Scattering by Prisms: Ice Crystal Haloes; Notes and Comments; Chapter 8. A Potpourri of Particles; 8.1 Coated Sphere; 8.2 Anisotropic Sphere; 8.3 Optically Active Particles; 8.4 Infinite Right Circular Cylinder; 8.5 Inhomogeneous Particles: Average Dielectric Function |
8.6 A Survey of Nonspherical Particles, Regular and IrregularNotes and Comments; PART 2-OPTICAL PROPERTIES OF BULK MA'TTER; Chapter 9. Classical Theories of Optical Constants; 9.1 The Lorentz Model; 9.2 The Multiple-Oscillator Model; 9.3 The Anisotropic Oscillator Model; 9.4 The Drude Model; 9.5 The Debye Relaxation Model; 9.6 General Relationship Between ε ́and ε""; Notes and Comments; Chapter 10. Measured Optical Properties; 10.1 Optical Properties of an Insulating Solid: MgO; 10.2 Optical Properties of a Metal: Aluminum; 10.3 Optical Properties of a Liquid: Water |
10.4 A Comment on the Magnitude of k |
|
|
|
|
|
|
Sommario/riassunto |
|
Absorption and Scattering of Light by Small ParticlesTreating absorption and scattering in equal measure, this self-contained, interdisciplinary study examines and illustrates how small particles absorb and scatter light. The authors emphasize that any discussion of the optical behavior of small particles is inseparable from a full understanding of the optical behavior of the parent material-bulk matter. To divorce one concept from the other is to render any study on scattering theory seriously incomplete.Special features and important topics covered in this book include:* Classica |
|
|
|
|
|
|
|
| |