1.

Record Nr.

UNINA9910893540403321

Titolo

Isturitz : cuadernos de prehistoria, arqueología

Pubbl/distr/stampa

Donostia, : Eusko Ikaskuntza, 1997-

Descrizione fisica

Online-Ressource

Classificazione

6,12

Disciplina

930

Soggetti

Zeitschrift

Lingua di pubblicazione

Basque

Formato

Materiale a stampa

Livello bibliografico

Periodico

Note generali

Gesehen am 14. November 2016

2.

Record Nr.

UNINA9910144634003321

Autore

Cao Frédéric

Titolo

Geometric Curve Evolution and Image Processing [[electronic resource] /] / by Frédéric Cao

Pubbl/distr/stampa

Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2003

ISBN

3-540-36392-0

Edizione

[1st ed. 2003.]

Descrizione fisica

1 online resource (X, 194 p.)

Collana

Lecture Notes in Mathematics, , 0075-8434 ; ; 1805

Disciplina

516.3/62

510 s

Soggetti

Differential equations, Partial

Optical data processing

Geometry, Differential

Partial Differential Equations

Image Processing and Computer Vision

Differential Geometry

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph



Nota di contenuto

Preface -- Part I. The curve smoothing problem: 1. Curve evolution and image processing; 2. Rudimentary bases of curve geometry -- Part II. Theoretical curve evolution: 3. Geometric curve shortening flow; 4. Curve evolution and level sets -- Part III. Numerical curve evolution: 5. Classical numerical methods for curve evolution; 6. A geometrical scheme for curve evolution -- Conclusion and perspectives -- A. Proof of Thm. 4.3.4 -- References -- Index.

Sommario/riassunto

In image processing, "motions by curvature" provide an efficient way to smooth curves representing the boundaries of objects. In such a motion, each point of the curve moves, at any instant, with a normal velocity equal to a function of the curvature at this point. This book is a rigorous and self-contained exposition of the techniques of "motion by curvature". The approach is axiomatic and formulated in terms of geometric invariance with respect to the position of the observer. This is translated into mathematical terms, and the author develops the approach of Olver, Sapiro and Tannenbaum, which classifies all curve evolution equations. He then draws a complete parallel with another axiomatic approach using level-set methods: this leads to generalized curvature motions. Finally, novel, and very accurate, numerical schemes are proposed allowing one to compute the solution of highly degenerate evolution equations in a completely invariant way. The convergence of this scheme is also proved.