1.

Record Nr.

UNINA9910219159403321

Autore

Laurent, Eric

Titolo

Il rovescio della biopolitica : una scrittura per il godimento / Éric Laurent

Pubbl/distr/stampa

Roma : Alpes, 2017

ISBN

978-88-6531-429-6

Descrizione fisica

XVI, 178 p. ; 24 cm

Collana

Annodamenti lacaniani

Disciplina

150.195

Locazione

BFS

Collocazione

150.195 LAU 1

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910144624203321

Autore

Ambrosio Luigi

Titolo

Mathematical Aspects of Evolving Interfaces : Lectures given at the C.I.M.-C.I.M.E. joint Euro-Summer School held in Madeira Funchal, Portugal, July 3-9, 2000 / / by Luigi Ambrosio, Klaus Deckelnick, Gerhard Dziuk, Masayasu Mimura, Vsvolod Solonnikov, Halil Mete Soner ; edited by Pierluigi Colli

Pubbl/distr/stampa

Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2003

ISBN

3-540-39189-4

Edizione

[1st ed. 2003.]

Descrizione fisica

1 online resource (XII, 248 p.)

Collana

C.I.M.E. Foundation Subseries ; ; 1812

Disciplina

515.35

Soggetti

Differential equations, Partial

Geometry, Differential

Field theory (Physics)

Thermodynamics

Partial Differential Equations

Differential Geometry

Classical and Continuum Physics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Preface -- 1. L. Ambrosio: Lecture Notes on Optimal Transport Problems -- 2. K. Deckelnick and G. Gziuk: Numerical Approximation of Mean Curvature Flow of Graphs and Level Sets -- 3. M. Mimura: Reaction-Diffusion Systems Arising in Biological and Chemical Systems: Application of Singular Limit Procedures -- 4. V. A. Solonnikov: Lectures on Evolution Free Boundary Problems: Classical Solutions -- 5. H. M. Soner: Variational and Dynamic Problems for the Ginzburg-Landau Functional.

Sommario/riassunto

Interfaces are geometrical objects modelling free or moving boundaries and arise in a wide range of phase change problems in physical and biological sciences, particularly in material technology and in dynamics of patterns. Especially in the end of last century, the study of evolving interfaces in a number of applied fields becomes increasingly



important, so that the possibility of describing their dynamics through suitable mathematical models became one of the most challenging and interdisciplinary problems in applied mathematics. The 2000 Madeira school reported on mathematical advances in some theoretical, modelling and numerical issues concerned with dynamics of interfaces and free boundaries. Specifically, the five courses dealt with an assessment of recent results on the optimal transportation problem, the numerical approximation of moving fronts evolving by mean curvature, the dynamics of patterns and interfaces in some reaction-diffusion systems with chemical-biological applications, evolutionary free boundary problems of parabolic type or for Navier-Stokes equations, and a variational approach to evolution problems for the Ginzburg-Landau functional.