1.

Record Nr.

UNINA9910692172603321

Titolo

Federal employment tax forms [[electronic resource]]

Pubbl/distr/stampa

[Washington, D.C.], : Dept. of the Treasury, Internal Revenue Service

Collana

Publication ; ; 393

Soggetti

Payroll tax - United States

Withholding tax - United States

Tax administration and procedure - United States

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Periodico

Note generali

No longer distributed to depository libraries in paper after <2001>

Description based on: 2003; title from title screen (viewed Nov. 20, 2003).

2.

Record Nr.

UNINA9910144620503321

Autore

Bramble James H

Titolo

Multiscale Problems and Methods in Numerical Simulations : Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 9-15, 2001 / / by James H. Bramble, Albert Cohen, Wolfgang Dahmen ; edited by Claudio Canuto

Pubbl/distr/stampa

Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2003

ISBN

3-540-39810-4

Edizione

[1st ed. 2003.]

Descrizione fisica

1 online resource (XIV, 170 p.)

Collana

C.I.M.E. Foundation Subseries ; ; 1825

Disciplina

530.13

Soggetti

Fourier analysis

Approximation theory

Numerical analysis

Fourier Analysis

Approximations and Expansions

Numerical Analysis

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa



Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references (pages 150-151).

Nota di contenuto

Preface -- A. Cohen: Theoretical Applied and Computational Aspects of Nonlinear Approximation -- W. Dahmen: Multiscale and Wavelet Methods for Operator Equations -- J. H. Bramble: Multilevel Methods in Finite Elements.

Sommario/riassunto

This volume aims to disseminate a number of new ideas that have emerged in the last few years in the field of numerical simulation, all bearing the common denominator of the "multiscale" or "multilevel" paradigm. This covers the presence of multiple relevant "scales" in a physical phenomenon; the detection and representation of "structures", localized in space or in frequency, in the solution of a mathematical model; the decomposition of a function into "details" that can be organized and accessed in decreasing order of importance; and the iterative solution of systems of linear algebraic equations using "multilevel" decompositions of finite dimensional spaces.