1.

Record Nr.

UNINA9910144617203321

Autore

Favre Charles

Titolo

The Valuative Tree / / by Charles Favre, Mattias Jonsson

Pubbl/distr/stampa

Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2004

ISBN

3-540-44646-X

Edizione

[1st ed. 2004.]

Descrizione fisica

1 online resource (XVI, 244 p.)

Collana

Lecture Notes in Mathematics, , 0075-8434 ; ; 1853

Disciplina

510 s

511/.52

Soggetti

Discrete mathematics

Geometry, Algebraic

Commutative algebra

Commutative rings

Topology

Discrete Mathematics

Algebraic Geometry

Commutative Rings and Algebras

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

1 Generalities -- 1.1 Setup -- 1.2 Valuations -- 1.3 Krull Valuations -- 1.4 Plane Curves -- 1.5 Examples of Valuations -- 1.6 Valuations Versus Krull Valuations -- 1.7 Sequences of Blowups and Krull Valuations -- 2 MacLane’s Method -- 2.1 Sequences of Key Polynomials -- 2.2 Classification -- 2.3 Graded Rings and Numerical Invariants -- 2.4 From Valuations to SKP’s -- 2.5 A Computation -- 3 Tree Structures -- 3.1 Trees -- 3.2 Nonmetric Tree Structure on V -- 3.3 Parameterization of V by Skewness -- 3.4 Multiplicities -- 3.5 Approximating Sequences -- 3.6 Thinness -- 3.7 Value Semigroups and Approximating Sequences -- 3.8 Balls of Curves -- 3.9 The Relative Tree Structure -- 4 Valuations Through Puiseux Series -- 4.1 Puiseux Series and Valuations -- 4.2 Tree Structure -- 4.3 Galois Action -- 4.4 A Tale of Two Trees -- 4.5 The Berkovich Projective Line -- 4.6 The Bruhat-Tits Metric -- 4.7 Dictionary -- 5 Topologies -- 5.1 The Weak Topology -- 5.2 The Strong Topology on V -- 5.3 The Strong



Topology on Vqm -- 5.4 Thin Topologies -- 5.5 The Zariski Topology -- 5.6 The Hausdorff-Zariski Topology -- 5.7 Comparison of Topologies -- 6 The Universal Dual Graph -- 6.1 Nonmetric Tree Structure -- 6.2 Infinitely Near Points -- 6.3 Parameterization and Multiplicity -- 6.4 The Isomorphism -- 6.5 Proof of the Isomorphism -- 6.6 Applications -- 6.7 The Dual Graph of the Minimal Desingularization -- 6.8 The Relative Tree Structure -- 7 Tree Measures -- 7.1 Outline -- 7.2 More on the Weak Topology -- 7.3 Borel Measures -- 7.4 Functions of Bounded Variation -- 7.5 Representation Theorem I -- 7.6 Complex Tree Potentials -- 7.7 Representation Theorem II -- 7.8 Atomic Measures -- 7.9 Positive Tree Potentials -- 7.10 Weak Topologies and Compactness -- 7.11 Restrictions to Subtrees -- 7.12 Inner Products -- 8 Applications of the Tree Analysis -- 8.1 Zariski’s Theory of Complete Ideals -- 8.2 The Voûte étoilée -- A Infinitely Singular Valuations -- A.1 Characterizations -- A.2 Constructions -- B The Tangent Space at a Divisorial Valuation -- C Classification -- D Combinatorics of Plane Curve Singularities -- D.1 Zariski’s Terminology for Plane Curve Singularities -- D.2 The Eggers Tree -- E.1 Completeness -- E.2 The Residue Field -- References.

Sommario/riassunto

This volume is devoted to a beautiful object, called the valuative tree and designed as a powerful tool for the study of singularities in two complex dimensions. Its intricate yet manageable structure can be analyzed by both algebraic and geometric means. Many types of singularities, including those of curves, ideals, and plurisubharmonic functions, can be encoded in terms of positive measures on the valuative tree. The construction of these measures uses a natural tree Laplace operator of independent interest.