1.

Record Nr.

UNINA9910144307703321

Titolo

Cis-trans isomerization in biochemistry [[electronic resource] /] / edited by Christophe Dugave

Pubbl/distr/stampa

Weinheim, : Wiley-VCH, c2006

ISBN

1-280-72283-5

9786610722839

3-527-60933-4

3-527-60949-0

Descrizione fisica

1 online resource (372 p.)

Altri autori (Persone)

DugaveChristophe

Disciplina

547.12252

547.7804452

Soggetti

Biomolecules

Stereochemistry

Isomerism

Biochemistry

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

cis-trans Isomerization in Biochemistry; Contents; Preface; List of Contributors; 1 Nomenclature; 2 General Mechanisms of Cis-Trans Isomerization: A Rapid Survey; 2.1 Introduction; 2.2 Homolytic Cis-Trans Isomerization; 2.3 Heterolytic Cis-Trans Isomerization; 3 Mechanisms of Cis-Trans Isomerization around the Carbon-Carbon Double Bonds via the Triplet State; 3.1 A Concept of a Triplet-Excited Region; 3.2 Triplet-State Isomerization in Retinal; 3.2.1 Cis-Trans Isomerization Examined by Electronic Absorption and Raman Spectroscopies and by High-Performance Liquid Chromatography Analysis

3.2.2 Triplet-Excited Region in All-trans-Retinal Shown in Terms of Stretching Force Constants Determined by Raman Spectroscopy and Normal Coordinate Analysis [9]3.2.3 Dynamic Triplet-Excited Region in Retinal As Revealed by Deuteration Effects on the Quantum Yields of Isomerization via the T(1) State (Okumura, Koyama, unpublished



results); 3.2.4 Summary and Future Trends; 3.3 Triplet-State Isomerization in β-Carotene and Spheroidene; 3.3.1 Cis-Trans Isomerization in β-Carotene Studied by Electronic Absorption and Raman Spectroscopies and by HPLC Analysis

3.3.2 Cis-Trans Isomerization in Spheroidene Studied by Time-Resolved Absorption Spectroscopy and by HPLC Analysis [17]3.3.3 The Triplet-Excited Region of All-trans-Spheroidene in Solution and the Triplet-State Structure of 15-cis-Spheroidene Bound to the Bacterial Reaction Center Determined by Raman Spectroscopy and Normal Coordinate Analysis [18]; 3.3.3.1 All-trans-Spheroidene in Solution; 3.3.3.2 15-cis-Spheroidene Bound to the Reaction Center

3.3.4 Conformational Changes and the Inversion of Spin-Polarization Identified by Low-Temperature Electron Paramagnetic Resonance Spectroscopy of the Reaction Center-Bound 15-cis-Spheroidene: A Hypothetical Mechanism of Triplet-Energy Dissipation [19]3.3.5 Summary and Future Trends; 3.4 Spectroscopic and Analytical Techniques for Studying Cis-Trans Isomerization in the T(1) State; 3.4.1 Spectroscopic Techniques: Electronic Absorption, Raman, and Magnetic Resonance Spectroscopies; 3.4.2 A Useful Analytical Technique: Singular-Value Decomposition Followed by Global Fitting [23-25]

4 Retinal Binding Proteins4.1 Retinal Chromophore in Rhodopsins; 4.1.1 Specific Color Regulation of the Retinal Chromophore in Protein; 4.1.2 Unique Photochemistry of the Retinal Chromophore in Protein; 4.2 Photoisomerization in Visual Rhodopsins; 4.2.1 Structure and Function of Visual Rhodopsins; 4.2.2 Primary Process in Vision Studied by Ultrafast Spectroscopy; 4.2.3 Structural Changes of the Chromophore and Protein upon Retinal Photoisomerization; 4.3 Photoisomerization in Archaeal Rhodopsins; 4.3.1 Structure and Function of Archaeal Rhodopsin

4.3.2 Primary Process in Bacterial Photosynthesis and Light Sensor Studied by Ultrafast Spectroscopy

Sommario/riassunto

Collating the knowledge from over 20,000 publications in chemistry, biology and nanotechnology, this handbook is the first to comprehensively present the state of the art in one ready reference. A team of international authors connects the various disciplines involved, covering cis-trans isomerization of double bonds and pseudo-double bonds, as well as other cis-trans isomerizations.For biochemists, organic chemists, physicochemists, photochemists, polymer and medicinal chemists.