1.

Record Nr.

UNINA9910143714703321

Autore

Goldstein Michael <1949->

Titolo

Bayes linear statistics [[electronic resource] ] : theory and methods / / Michael Goldstein and David Wooff

Pubbl/distr/stampa

Chichester, England ; ; Hoboken, NJ, : John Wiley, c2007

ISBN

1-280-85495-2

9786610854950

0-470-06566-4

0-470-06567-2

Descrizione fisica

1 online resource (538 p.)

Collana

Wiley series in probability and statistics

Altri autori (Persone)

WooffDavid

Disciplina

519.5

519.542

Soggetti

Bayesian statistical decision theory

Linear systems

Computational complexity

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references (p. [497]-502) and index.

Nota di contenuto

Bayes Linear Statistics; Contents; Preface; 1 The Bayes linear approach; 1.1 Combining beliefs with data; 1.2 The Bayesian approach; 1.3 Features of the Bayes linear approach; 1.4 Example; 1.4.1 Expectation, variance, and standardization; 1.4.2 Prior inputs; 1.4.3 Adjusted expectations; 1.4.4 Adjusted versions; 1.4.5 Adjusted variances; 1.4.6 Checking data inputs; 1.4.7 Observed adjusted expectations; 1.4.8 Diagnostics for adjusted beliefs; 1.4.9 Further diagnostics for the adjusted versions; 1.4.10 Summary of basic adjustment; 1.4.11 Diagnostics for collections

1.4.12 Exploring collections of beliefs via canonical structure1.4.13 Modifying the original specifications; 1.4.14 Repeating the analysis for the revised model; 1.4.15 Global analysis of collections of observations; 1.4.16 Partial adjustments; 1.4.17 Partial diagnostics; 1.4.18 Summary; 1.5 Overview; 2 Expectation; 2.1 Expectation as a primitive; 2.2 Discussion: expectation as a primitive; 2.3 Quantifying collections of uncertainties; 2.4 Specifying prior beliefs; 2.4.1 Example: oral glucose



tolerance test; 2.5 Qualitative and quantitative prior specification

2.6 Example: qualitative representation of uncertainty2.6.1 Identifying the quantities of interest; 2.6.2 Identifying relevant prior information; 2.6.3 Sources of variation; 2.6.4 Representing population variation; 2.6.5 The qualitative representation; 2.6.6 Graphical models; 2.7 Example: quantifying uncertainty; 2.7.1 Prior expectations; 2.7.2 Prior variances; 2.7.3 Prior covariances; 2.7.4 Summary of belief specifications; 2.8 Discussion: on the various methods for assigning expectations; 3 Adjusting beliefs; 3.1 Adjusted expectation; 3.2 Properties of adjusted expectation

3.3 Adjusted variance3.4 Interpretations of belief adjustment; 3.5 Foundational issues concerning belief adjustment; 3.6 Example: one-dimensional problem; 3.7 Collections of adjusted beliefs; 3.8 Examples; 3.8.1 Algebraic example; 3.8.2 Oral glucose tolerance test; 3.8.3 Many oral glucose tolerance tests; 3.9 Canonical analysis for a belief adjustment; 3.9.1 Canonical directions for the adjustment; 3.9.2 The resolution transform; 3.9.3 Partitioning the resolution; 3.9.4 The reverse adjustment; 3.9.5 Minimal linear sufficiency; 3.9.6 The adjusted belief transform matrix

3.10 The geometric interpretation of belief adjustment3.11 Examples; 3.11.1 Simple one-dimensional problem; 3.11.2 Algebraic example; 3.11.3 Oral glucose tolerance test; 3.12 Further reading; 4 The observed adjustment; 4.1 Discrepancy; 4.1.1 Discrepancy for a collection; 4.1.2 Evaluating discrepancy over a basis; 4.1.3 Discrepancy for quantities with variance zero; 4.2 Properties of discrepancy measures; 4.2.1 Evaluating the discrepancy vector over a basis; 4.3 Examples; 4.3.1 Simple one-dimensional problem; 4.3.2 Detecting degeneracy; 4.3.3 Oral glucose tolerance test

4.4 The observed adjustment

Sommario/riassunto

Bayesian methods combine information available from data with any prior information available from expert knowledge. The Bayes linear approach follows this path, offering a quantitative structure for expressing beliefs, and systematic methods for adjusting these beliefs, given observational data. The methodology differs from the full Bayesian methodology in that it establishes simpler approaches to belief specification and analysis based around expectation judgements. Bayes Linear Statistics presents an authoritative account of this approach, explaining the foundations, theory, methodol



2.

Record Nr.

UNINA9910698007103321

Autore

Stier David J

Titolo

Habitat suitability index models and instream flow suitability curves American shad [[electronic resource] /] / by David J. Stier and Johnie H. Crance ; performed for National Coastal Ecosystems Team, Division of Biological Services, Research and Development, Fish and Wildlife Service, U.S. Department of the Interior

Pubbl/distr/stampa

Washington, DC : , : National Coastal Ecosystems Team, Division of Biological Services, Research and Development, Fish and Wildlife Service, U.S. Dept. of the Interior, , [1985]

Descrizione fisica

vi, 34 pages : illustrations, 1 form ; ; 28 cm

Collana

Biological report ; ; 82(10.88)

Altri autori (Persone)

CranceJohnie H

Soggetti

American shad

Habitat partitioning (Ecology) - Mathematical models

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Title from title screen (viewed on Sept. 11, 2008).

"June 1985."

Nota di bibliografia

Includes bibliographical referencse (pages 27-34).



3.

Record Nr.

UNICAMPANIAVAN00081508

Autore

Ciccaglione, Federico

Titolo

Manuale di storia del diritto italiano / Federico Ciccaglione

Pubbl/distr/stampa

Milano, : Vallardi

Descrizione fisica

vol. ; 25 cm.

Soggetti

Diritto - Italia - Storia - Sec. 19.-20

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia