1.

Record Nr.

UNIPARTHENOPE000007037

Autore

Zaza, Carlo

Titolo

La sentenza penale : schema argomentativo, struttura, stile / Carlo Zaza

Pubbl/distr/stampa

Milano : Giuffrè, 2004

ISBN

88-14-10921-4

Descrizione fisica

XIV, 274 p. ; 24 cm

Collana

Teoria e pratica del diritto . Sez. 3. , Diritto e procedura penale ; 0136

Disciplina

345.45077

Collocazione

S-0031

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910143568103321

Autore

Simon Dan <1960->

Titolo

Optimal state estimation [[electronic resource] ] : Kalman, H [infinity] and nonlinear approaches / / Dan Simon

Pubbl/distr/stampa

Hoboken, N.J., : Wiley-Interscience, c2006

ISBN

1-280-50795-0

9786610507955

0-470-04534-5

1-61583-476-1

0-470-04533-7

Descrizione fisica

1 online resource (554 p.)

Disciplina

519

629.8312

Soggetti

Kalman filtering

Nonlinear systems

Mathematical optimization

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa



Livello bibliografico

Monografia

Note generali

On t.p. "[infinity]" appears as the infinity symbol.

Nota di bibliografia

Includes bibliographical references (p. 501-520) and index.

Nota di contenuto

Optimal State Estimation; CONTENTS; Acknowledgments; Acronyms; List of algorithms; Introduction; PART I INTRODUCTORY MATERIAL; 1 Linear systems theory; 1.1 Matrix algebra and matrix calculus; 1.1.1 Matrix algebra; 1.1.2 The matrix inversion lemma; 1.1.3 Matrix calculus; 1.1.4 The history of matrices; 1.2 Linear systems; 1.3 Nonlinear systems; 1.4 Discretization; 1.5 Simulation; 1.5.1 Rectangular integration; 1.5.2 Trapezoidal integration; 1.5.3 Runge-Kutta integration; 1.6 Stability; 1.6.1 Continuous-time systems; 1.6.2 Discrete-time systems; 1.7 Controllability and observability

1.7.1 Controllability1.7.2 Observability; 1.7.3 Stabilizability and detectability; 1.8 Summary; Problems; 2 Probability theory; 2.1 Probability; 2.2 Random variables; 2.3 Transformations of random variables; 2.4 Multiple random variables; 2.4.1 Statistical independence; 2.4.2 Multivariate statistics; 2.5 Stochastic Processes; 2.6 White noise and colored noise; 2.7 Simulating correlated noise; 2.8 Summary; Problems; 3 Least squares estimation; 3.1 Estimation of a constant; 3.2 Weighted least squares estimation; 3.3 Recursive least squares estimation; 3.3.1 Alternate estimator forms

3.3.2 Curve fitting3.4 Wiener filtering; 3.4.1 Parametric filter optimization; 3.4.2 General filter optimization; 3.4.3 Noncausal filter optimization; 3.4.4 Causal filter optimization; 3.4.5 Comparison; 3.5 Summary; Problems; 4 Propagation of states and covariances; 4.1 Discrete-time systems; 4.2 Sampled-data systems; 4.3 Continuous-time systems; 4.4 Summary; Problems; PART II THE KALMAN FILTER; 5 The discrete-time Kalman filter; 5.1 Derivation of the discrete-time Kalman filter; 5.2 Kalman filter properties; 5.3 One-step Kalman filter equations; 5.4 Alternate propagation of covariance

5.4.1 Multiple state systems5.4.2 Scalar systems; 5.5 Divergence issues; 5.6 Summary; Problems; 6 Alternate Kalman filter formulations; 6.1 Sequential Kalman filtering; 6.2 Information filtering; 6.3 Square root filtering; 6.3.1 Condition number; 6.3.2 The square root time-update equation; 6.3.3 Potter's square root measurement-update equation; 6.3.4 Square root measurement update via triangularization; 6.3.5 Algorithms for orthogonal transformations; 6.4 U-D filtering; 6.4.1 U-D filtering: The measurement-update equation; 6.4.2 U-D filtering: The time-update equation; 6.5 Summary; Problems

7 Kalman filter generalizations7.1 Correlated process and measurement noise; 7.2 Colored process and measurement noise; 7.2.1 Colored process noise; 7.2.2 Colored measurement noise: State augmentation; 7.2.3 Colored measurement noise: Measurement differencing; 7.3 Steady-state filtering; 7.3.1 α-β filtering; 7.3.2 α-β-γ filtering; 7.3.3 A Hamiltonian approach to steady-state filtering; 7.4 Kalman filtering with fading memory; 7.5 Constrained Kalman filtering; 7.5.1 Model reduction; 7.5.2 Perfect measurements; 7.5.3 Projection approaches; 7.5.4 A pdf truncation approach; 7.6 Summary; Problems

8 The continuous-time Kalman filter

Sommario/riassunto

A bottom-up approach that enables readers to master and apply the latest techniques in state estimationThis book offers the best mathematical approaches to estimating the state of a general system. The author presents state estimation theory clearly and rigorously, providing the right amount of advanced material, recent research results, and references to enable the reader to apply state estimation techniques confidently across a variety of fields in science and engineering.While there are other textbooks that treat state estimation,



this one offers special features and a uniqu

3.

Record Nr.

UNICAMPANIAVAN00061604

Autore

Anikonov, Yu. E.

Titolo

Formulas in inverse and ill-posed problems / Yu.E. Anikonov

Pubbl/distr/stampa

Utrecht, : VSP, 1997

ISBN

90-676-4216-9

Descrizione fisica

II, 203 p. ; 25 cm

Soggetti

35-XX - Partial differential equations [MSC 2020]

35R30 - Inverse problems for PDEs [MSC 2020]

65-XX - Numerical analysis [MSC 2020]

86A22 - Inverse problems in geophysics [MSC 2020]

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia