|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910143313903321 |
|
|
Autore |
Bruneau Michel <1937-> |
|
|
Titolo |
Fundamentals of acoustics / / Michel Bruneau ; Thomas Scelo, translator and contributor |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
London ; ; Newport Beach, CA, : ISTE Ltd, 2006 |
|
|
|
|
|
|
|
ISBN |
|
1-280-51060-9 |
9786610510603 |
1-84704-475-1 |
0-470-61243-6 |
0-470-39456-0 |
1-84704-575-8 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (638 p.) |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Sound |
Acoustical engineering |
Fluids - Acoustic properties |
Sound - Transmission |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. [631]-632) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Fundamentals of Acoustics; Table of Contents; Preface; Chapter 1. Equations of Motion in Non-dissipative Fluid; 1.1. Introduction; 1.1.1. Basic elements; 1.1.2. Mechanisms of transmission; 1.1.3. Acoustic motion and driving motion; 1.1.4. Notion of frequency; 1.1.5. Acoustic amplitude and intensity; 1.1.6. Viscous and thermal phenomena; 1.2. Fundamental laws of propagation in non-dissipative fluids; 1.2.1. Basis of thermodynamics; 1.2.2. Lagrangian and Eulerian descriptions of fluid motion; 1.2.3. Expression of the fluid compressibility: mass conservation law |
1.2.4. Expression of the fundamental law of dynamics: Euler's equation1.2.5. Law of fluid behavior: law of conservation of thermomechanic energy; 1.2.6. Summary of the fundamental laws; 1.2.7. Equation of equilibrium of moments; 1.3. Equation of acoustic propagation; 1.3.1. Equation of propagation; 1.3.2. Linear acoustic approximation; 1.3.3. Velocity potential; 1.3.4. Problems at the |
|
|
|
|
|
|
|
|
|
|
|
boundaries; 1.4. Density of energy and energy flow, energy conservation law; 1.4.1. Complex representation in the Fourier domain; 1.4.2. Energy density in an "ideal" fluid |
1.4.3. Energy flow and acoustic intensity1.4.4. Energy conservation law; Chapter 1: Appendix. Some General Comments on Thermodynamics; A.1. Thermodynamic equilibrium and equation of state; A.2. Digression on functions of multiple variables (study case of two variables); A.2.1. Implicit functions; A.2.2. Total exact differential form; Chapter 2. Equations of Motion in Dissipative Fluid; 2.1. Introduction; 2.2. Propagation in viscous fluid: Navier-Stokes equation; 2.2.1. Deformation and strain tensor; 2.2.2. Stress tensor; 2.2.3. Expression of the fundamental law of dynamics |
2.3. Heat propagation: Fourier equation2.4. Molecular thermal relaxation; 2.4.1. Nature of the phenomenon; 2.4.2. Internal energy, energy of translation, of rotation and of vibration of molecules; 2.4.3. Molecular relaxation: delay of molecular vibrations; 2.5. Problems of linear acoustics in dissipative fluid at rest; 2.5.1. Propagation equations in linear acoustics.; 2.5.2. Approach to determine the solutions; 2.5.3. Approach of the solutions in presence of acoustic sources; 2.5.4. Boundary conditions |
Chapter 2: Appendix. Equations of continuity and equations at the thermomechanic discontinuities in continuous mediaA.1. Introduction; A.1.1. Material derivative of volume integrals; A.1.2. Generalization; A.2. Equations of continuity; A.2.1. Mass conservation equation; A.2.2. Equation of impulse continuity; A.2.3. Equation of entropy continuity; A.2.4. Equation of energy continuity; A.3. Equations at discontinuities in mechanics; A.3.1. Introduction; A.3.2. Application to the equation of impulse conservation; A.3.3. Other conditions at discontinuities |
A.4. Examples of application of the equations at discontinuities in mechanics: interface conditions |
|
|
|
|
|
|
Sommario/riassunto |
|
The central theme of the chapters is acoustic propagation in fluid media, dissipative or non-dissipative, homogeneous or nonhomogeneous, infinite or limited, placing particular emphasis on the theoretical formulation of the problems considered. |
|
|
|
|
|
|
|
| |