|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910143228203321 |
|
|
Autore |
Coussy Olivier |
|
|
Titolo |
Poromechanics / / Olivier Coussy |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Chichester, England ; ; Hoboken, NJ, : Wiley, c2004 |
|
|
|
|
|
|
|
ISBN |
|
1-280-26936-7 |
9786610269365 |
0-470-09270-X |
0-470-09271-8 |
|
|
|
|
|
|
|
|
Edizione |
[2nd ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (314 p.) |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Porous materials - Mechanical properties |
Porous materials - Mechanical properties - Mathematical models |
Continuum mechanics |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Previous ed. published as: Mechanics of porous continua. 1995. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. [285]-292) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Poromechanics; Contents; Preface; Acknowledgements; 1 Deformation and Kinematics. Mass Balance; 1.1 The Porous Medium and the Continuum Approach; 1.1.1 Connected and Occluded Porosity. The Matrix; 1.1.2 Skeleton and Fluid Particles. Continuity Hypothesis; 1.2 The Skeleton Deformation; 1.2.1 Deformation Gradient and Transport Formulae; 1.2.2 Eulerian and Lagrangian Porosities. Void Ratio; 1.2.3 Strain Tensor; 1.2.4 Infinitesimal Transformation and the Linearized Strain Tensor; 1.3 Kinematics; 1.3.1 Particle Derivative; 1.3.2 Strain Rates; 1.4 Mass Balance; 1.4.1 Equation of Continuity |
1.4.2 The Relative Flow Vector of a Fluid Mass. Filtration Vector. Fluid Mass Content 1.5 Advanced Analysis; 1.5.1 Particle Derivative with a Surface of Discontinuity; 1.5.2 Mass Balance with a Surface of Discontinuity. The Rankine-Hugoniot Jump Condition; 1.5.3 Mass Balance and the Double Porosity Network; 2 Momentum Balance. Stress Tensor; 2.1 Momentum Balance; 2.1.1 The Hypothesis of Local Forces; 2.1.2 The Momentum Balance; 2.1.3 The Dynamic Theorem; 2.2 The Stress Tensor; 2.2.1 Action-Reaction Law; 2.2.2 The Tetrahedron Lemma and the Cauchy Stress Tensor; 2.3 Equation of Motion |
2.3.1 The Local Dynamic Resultant Theorem 2.3.2 The Dynamic |
|
|
|
|