|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910143190903321 |
|
|
Autore |
Berkovitz Leonard David <1924-> |
|
|
Titolo |
Convexity and optimization in R [superscript n] [[electronic resource] /] / Leonard D. Berkovitz |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
New York, : J. Wiley, c2002 |
|
|
|
|
|
|
|
ISBN |
|
1-280-36700-8 |
9786610367009 |
0-470-31182-7 |
0-471-46166-0 |
0-471-24970-X |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (283 p.) |
|
|
|
|
|
|
Collana |
|
Pure and applied mathematicss |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Convex sets |
Mathematical optimization |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. 261-262) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
CONVEXITY AND OPTIMIZATION IN R(n); CONTENTS; Preface; I Topics in Real Analysis; 1. Introduction; 2. Vectors in R(n); 3. Algebra of Sets; 4. Metric Topology of R(n); 5. Limits and Continuity; 6. Basic Property of Real Numbers; 7. Compactness; 8. Equivalent Norms and Cartesian Products; 9. Fundamental Existence Theorem; 10. Linear Transformations; 11. Differentiation in R(n); II Convex Sets in R(n); 1. Lines and Hyperplanes in R(n); 2. Properties of Convex Sets; 3. Separation Theorems; 4. Supporting Hyperplanes: Extreme Points; 5. Systems of Linear Inequalities: Theorems of the Alternative |
6. Affine Geometry7. More on Separation and Support; III Convex Functions; 1. Definition and Elementary Properties; 2. Subgradients; 3. Differentiable Convex Functions; 4. Alternative Theorems for Convex Functions; 5. Application to Game Theory; IV Optimization Problems; 1. Introduction; 2. Differentiable Unconstrained Problems; 3. Optimization of Convex Functions; 4. Linear Programming Problems; 5. First-Order Conditions for Differentiable Nonlinear Programming Problems; 6. Second-Order Conditions; V Convex Programming and Duality; 1. |
|
|
|
|