1.

Record Nr.

UNINA9910458318403321

Autore

Schmid Peter <1941->

Titolo

The solution of the k(GV) problem [[electronic resource] /] / Peter Schmid

Pubbl/distr/stampa

London, : Imperial College Press

Singapore ; ; Hackensack, NJ, : Distributed by World Scientific Pub., c2007

ISBN

1-281-86946-5

9786611869465

1-86094-971-1

Descrizione fisica

1 online resource (248 p.)

Collana

ICP advanced texts in mathematics ; ; v. 4

Disciplina

515/.7223

Soggetti

Kernel functions

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references (p. 225-229) and index.

Nota di contenuto

Contents; Preface; 1. Conjugacy Classes, Characters, and Clifford Theory; 1.1 Class Functions and Characters; 1.2 Induced and Tensor-induced Modules; 1.3 Schur's Lemma; 1.4 Brauer's Permutation Lemma; 1.5 Algebraic Conjugacy; 1.6 Coprime Actions; 1.7 Invariant and Good Conjugacy Classes; 1.8 Nonstable Clifford Theory; 1.9 Stable Clifford Theory; 1.10 Good Conjugacy Classes and Extendible Characters; 2. Blocks of Characters and Brauer's k(B) Problem; 2.1 Modular Decomposition and Brauer Characters; 2.2 Cartan Invariants and Blocks; 2.3 Defect and Defect Groups; 2.4 The Brauer-Feit Theorem

2.5 Higher Decomposition Numbers, Subsections2.6 Blocks of p-Solvable Groups; 2.7 Coprime FpX-Modules; 3. The k(GV ) Problem; 3.1 Preliminaries; 3.2 Transitive Linear Groups; 3.3 Subsections and Point Stabilizers; 3.4 Abelian Point Stabilizers; 4. Symplectic and Orthogonal Modules; 4.1 Self-dual Modules; 4.2 Extraspecial Groups; 4.3 Holomorphs; 4.4 Good Conjugacy Classes Once Again; 4.5 Some Weil Characters; 4.6 Symplectic and Orthogonal Modules; 5. Real Vectors; 5.1 Regular, Abelian and Real Vectors; 5.2 The Robinson{Thompson Theorem; 5.3 Search for Real Vectors; 5.4 Clifford Reduction



5.5 Reduced Pairs5.6 Counting Methods; 5.7 Two Examples; 6. Reduced Pairs of Extraspecial Type; 6.1 Nonreal Reduced Pairs; 6.2 Fixed Point Ratios; 6.3 Point Stabilizers of Exponent 2; 6.4 Characteristic 2; 6.5 Extraspecial 3-Groups; 6.6 Extraspecial 2-Groups of Small Order; 6.7 The Remaining Cases; 7. Reduced Pairs of Quasisimple Type; 7.1 Nonreal Reduced Pairs; 7.2 Regular Orbits; 7.3 Covering Numbers, Projective Marks; 7.4 Sporadic Groups; 7.5 Alternating Groups; 7.6 Linear Groups; 7.7 Symplectic Groups; 7.8 Unitary Groups; 7.9 Orthogonal Groups; 7.10 Exceptional Groups

8. Modules without Real Vectors8.1 Some Fixed Point Ratios; 8.2 Tensor Induction of Reduced Pairs; 8.3 Tensor Products of Reduced Pairs; 8.4 The Riese-Schmid Theorem; 8.5 Nonreal Induced Pairs, Wreath Products; 9. Class Numbers of Permutation Groups; 9.1. The Partition Function; 9.2 Preparatory Results; 9.3 The Liebeck-Pyber Theorem; 9.4 Improvements; 10. The Final Stages of the Proof; 10.1 Class Numbers for Nonreal Reduced Pairs; 10.2 Counting Invariant Conjugacy Classes; 10.3 Nonreal Induced Pairs; 10.4 Characteristic 5; 10.5 Summary; 11. Possibilities for k(GV ) = jV j; 11.1 Preliminaries

11.2 Some Congruences11.3 Reduced Pairs; 12. Some Consequences for Block Theory; 12.1 Brauer Correspondence; 12.2 Clifford Theory of Blocks; 12.3 Blocks with Normal Defect Groups; 13. The Non-Coprime Situation; Appendix A: Cohomology of Finite Groups; Appendix B: Some Parabolic Subgroups; Appendix C: Weil Characters; Bibliography; List of Symbols; Index

Sommario/riassunto

The <i>k(GV)</i> conjecture claims that the number of conjugacy classes (irreducible characters) of the semidirect product <i>GV</i> is bounded above by the order of <i>V</i>. Here <i>V</i> is a finite vector space and <i>G</i> a subgroup of <i>GL(V)</i> of order prime to that of <i>V</i>. It may be regarded as the special case of Brauer's celebrated <i>k(B)</i> problem dealing with <i>p</i>-blocks <i>B</i> of p-solvable groups (<i>p</i> a prime). Whereas Brauer's problem is still open in its generality, the <i>k(GV)</i> problem has recently been solved, completing the work of a series of aut



2.

Record Nr.

UNINA9910142478203321

Titolo

Journal of law & equality

Pubbl/distr/stampa

[Toronto], : [University of Toronto, Faculty of Law]

Descrizione fisica

1 online resource

Disciplina

342.71/085/05

Soggetti

Law - Canada

Equality before the law - Canada

Law reviews - Ontario

Law reviews - Ontario - Toronto

Égalité devant la loi - Canada

Droit - Canada

Revues de droit - Ontario - Toronto

Revues de droit - Ontario

Equality before the law

Law

Law reviews

Droit

Égalité devant la loi

Périodique électronique (Descripteur de forme)

Ressource Internet (Descripteur de forme)

Periodicals.

Ontario Toronto

Canada

Ontario

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Periodico

Note generali

Refereed/Peer-reviewed