1.

Record Nr.

UNINA9910141724903321

Autore

Zhang Jin Z

Titolo

Hydrogen generation, storage, and utilization / / Jin Zhong Zhang [and three others]

Pubbl/distr/stampa

Hoboken, New Jersey : , : Wiley : , : ScienceWise Publishing, , 2014

©2014

ISBN

1-5231-1082-1

1-118-87519-2

1-118-87517-6

1-118-87502-8

Descrizione fisica

1 online resource (226 p.)

Collana

A Wiley-Science Wise Co-Publication

Disciplina

665.8/1

Soggetti

Hydrogen - Storage

Energy storage

Hydrogen as fuel

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references at the end of each chapters and index.

Nota di contenuto

Cover; Title page; Copyright page; Contents; Preface; Acknowledgments; 1: Introduction to Basic Properties of Hydrogen; 1.1 Basics about THE Hydrogen Element; 1.2 Basics about the Hydrogen Molecule; 1.3 Other Fundamental Aspects of Hydrogen; 1.4 Safety and Precautions about Hydrogen; References; 2: Hydrocarbons for Hydrogen Generation; 2.1 Basics about Hydrocarbons; 2.2 Steam Methane Reforming; 2.3 Partial Oxidation; 2.4 Methanol and Ethanol Steam Reforming; 2.5 Glycerol Reforming; 2.5.1 Glycerol Reforming Processes; 2.5.2 Mechanistic Aspects of Glycerol Reforming Reactions

2.5.3 Catalytic Reforming of Glycerol2.6 Cracking of Ammonia and Methane; 2.6.1 Ammonia Cracking; 2.6.2 Methane Cracking; 2.6.3 Other Decomposition Methods; 2.7 Summary; References; 3: Solar Hydrogen Generation: Photocatalytic and Photoelectrochemical Methods; 3.1 Basics about Solar Water Splitting; 3.2 Photocatalyic Methods; 3.2.1 Background; 3.2.2 Metal Oxides; 3.2.3 Metal Oxynitrides/Metal Nitrides/Metal Phosphides; 3.2.4 Metal



Chalcogenides; 3.2.5 Conclusion; 3.3 Photoelectrochemical Methods; 3.3.1 Background; 3.3.2 Photocathode for Water Reduction; 3.3.3 Photoanode for Water Oxidation

3.3.4 Conclusion3.4 Summary; References; 4: Biohydrogen Generation and Other Methods; 4.1 Basics about Biohydrogen; 4.2 Pathways of Biohydrogen Production from Biomass; 4.3 Thermochemical Conversion of Biomass to Hydrogen; 4.3.1 Hydrogen from Biomass via Pyrolysis; 4.3.2 Hydrogen from Biomass via Gasification; 4.3.3 Hydrogen from Biomass via Supercritical Water (Fluid-Gas) Extraction; 4.3.4 Comparison of Thermochemical Processes; 4.4 Biological Process for Hydrogen Production; 4.4.1 Biophotolysis of Water Using Microalgae; 4.4.2 Photofermentation; 4.4.3 Dark Fermentation

4.4.4 Two-Stage Process: Integration of Dark and Photofermentation4.5 Summary; References; 5: Established Methods Based on Compression and Cryogenics; 5.1 Basic Issues about Hydrogen Storage; 5.2 High Pressure Compression; 5.3 Liquid Hydrogen; 5.4 Summary; References; 6: Chemical Storage Based on Metal Hydrides and Hydrocarbons; 6.1 Basics on Hydrogen Storage of Metal Hydrides; 6.2 Hydrogen Storage Characteristics of Metal Hydrides; 6.2.1 Storage Capacities; 6.2.2 Thermodynamics and Reversible Storage Capacity; 6.2.3 Hydrogenation and Dehydrogenation Kinetics; 6.2.4 Cycling Stability

6.2.5 Activation6.3 Different Metal Hydrides; 6.3.1 Binary Metal Hydrides; 6.3.2 Metal Alloy Hydrides; 6.3.3 Complex Metal Hydrides; 6.3.4 Improving Metal Hydride Performance; 6.4 Hydrocarbons for Hydrogen Storage; 6.4.1 Reaction between Carbon Atom and Hydrogen; 6.4.2 Reaction between Solid Carbon and Hydrogen; 6.4.3 Reaction between Carbon Dioxide and Hydrogen; 6.5 Summary; References; 7: Physical Storage Using Nanostructured and Porous Materials; 7.1 Physical Storage Using Nanostructures; 7.1.1 Carbon Nanostructures; 7.1.2 Other Nanostructures and Microstructures

7.2 Physical Storage Using Metal-Organic Frameworks

Sommario/riassunto

Addresses the three fundamental aspects of hydrogen as a fuel resource: generation, storage, and utilizationProvides theoretical basis for the chemical processes required for hydrogen generation, including solar, photoelectrochemical, thermochemical, and fermentation methodsDiscusses storage of hydrogen based on metal hydrides, hydrocarbons, high pressure compression, and cryogenicsExamines the applications of hydrogen utilization in the fields of petroleum, chemical, metallurgical, physics, and manufacturingContains over 90 figures, including 27 col



2.

Record Nr.

UNINA9910784692303321

Titolo

Handbook of health research methods : investigation, measurement and analysis / / edited by Ann Bowling and Shah Ebrahim

Pubbl/distr/stampa

Maidenhead : , : Open University Press/McGraw-Hill Education, , 2005

©2005

ISBN

1-280-95086-2

0-335-22436-9

Descrizione fisica

1 online resource (xii, 625 pages) : illustrations

Disciplina

362.1072

610.72

Soggetti

Medical care - Research

Public health - Research

Health - Research - Methodology

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Sommario/riassunto

This handbook helps researchers to plan, carry out, and analyse health research, and evaluate the quality of research studies. The book takes a multidisciplinary approach to enable researchers from different disciplines to work side-by-side in the investigation of population health, the evaluation of health care, and in health care delivery. Handbook of Health Research Methods is an essential tool for researchers and postgraduate students taking masters courses, or undertaking doctoral programmes, in health services evaluation, health sciences, health management, public health, nursing, sociology, socio-biology, medicine and epidemiology. However, the book also appeals to health professionals who wish to broaden their knowledge of research methods in order to make effective policy and practice decisions.