|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910141509603321 |
|
|
Autore |
Luo Albert C. J |
|
|
Titolo |
Vibro-impact dynamics [[electronic resource] /] / Albert C.J. Luo, Yu Guo |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Chichester, West Sussex, U.K., : John Wiley & Sons Inc., 2013 |
|
|
|
|
|
|
|
ISBN |
|
1-118-40292-8 |
1-299-18819-2 |
1-118-40291-X |
1-118-40290-1 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (272 p.) |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Vibration |
Impact |
Shock (Mechanics) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
VIBRO-IMPACT DYNAMICS; Contents; Preface; 1 Introduction; 1.1 Discrete and Discontinuous Systems; 1.1.1 Discrete Dynamical Systems; 1.1.2 Discontinuous Dynamical Systems; 1.2 Fermi Oscillators and Impact Problems; 1.3 Book Layout; 2 Nonlinear Discrete Systems; 2.1 Definitions; 2.2 Fixed Points and Stability; 2.3 Stability Switching Theory; 2.4 Bifurcation Theory; 3 Complete Dynamics and Fractality; 3.1 Complete Dynamics of Discrete Systems; 3.2 Routes to Chaos; 3.2.1 One-Dimensional Maps; 3.2.2 Two-Dimensional Systems; 3.3 Complete Dynamics of the Henon Map; 3.4 Similarity and Multifractals |
3.4.1 Similar Structures in Period Doubling3.4.2 Fractality of Chaos via PD Bifurcation; 3.4.3 An Example; 3.5 Complete Dynamics of Logistic Map; 4 Discontinuous Dynamical Systems; 4.1 Basic Concepts; 4.2 G-Functions; 4.3 Passable Flows; 4.4 Non-Passable Flows; 4.5 Grazing Flows; 4.6 Flow Switching Bifurcations; 5 Nonlinear Dynamics of Bouncing Balls; 5.1 Analytic Dynamics of Bouncing Balls; 5.1.1 Periodic Motions; 5.1.2 Stability and Bifurcation; 5.1.3 Numerical Illustrations; 5.2 Period-m Motions; 5.3 Complex Dynamics; 5.4 Complex Periodic Motions; 6 Complex Dynamics of Impact Pairs |
|
|
|
|