1.

Record Nr.

UNINA9910141250803321

Titolo

Principles and applications of lithium secondary batteries [[electronic resource] /] / edited by Jung-Ki Park

Pubbl/distr/stampa

Weinheim, : Wiley-VCH, 2012

ISBN

3-527-65042-3

1-280-71574-X

9786613677174

3-527-65040-7

3-527-65043-1

Descrizione fisica

1 online resource (382 p.)

Altri autori (Persone)

ParkJung-Ki

Disciplina

621.312423

Soggetti

Lithium cells

Storage batteries

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Principles and Applications of Lithium Secondary Batteries; Contents; List of Contributors; Preface; 1 Introduction; 1.1 History of Batteries; 1.2 Development of Cell Technology; 1.3 Overview of Lithium Secondary Batteries; 1.4 Future of Lithium Secondary Batteries; References; 2 The Basic of Battery Chemistry; 2.1 Components of Batteries; 2.1.1 Electrochemical Cells and Batteries; 2.1.2 Battery Components and Electrodes; 2.1.3 Full Cells and Half Cells; 2.1.4 Electrochemical Reaction and Electric Potential; 2.2 Voltage and Current of Batteries; 2.2.1 Voltage; 2.2.2 Current

2.2.3 Polarization 2.3 Battery Characteristics; 2.3.1 Capacity; 2.3.2 Energy Density; 2.3.3 Power; 2.3.4 Cycle Life; 2.3.5 Discharge Curves; 3 Materials for Lithium Secondary Batteries; 3.1 Cathode Materials; 3.1.1 Development History of Cathode Materials; 3.1.2 Overview of Cathode Materials; 3.1.2.1 Redox Reaction of Cathode Materials; 3.1.2.2 Discharge Potential Curves; 3.1.2.3 Demand Characteristics of Cathode Materials; 3.1.2.4 Major Cathode Materials; 3.1.3 Structure and Electrochemical Properties of Cathode Materials; 3.1.3.1 Layered Structure Compounds; 3.1.3.2 Spinel Composites



3.1.3.3 Olivine Composites 3.1.3.4 Vanadium Composites; 3.1.4 Performance Improvement by Surface Modification; 3.1.4.1 Layered Structure Compounds; 3.1.4.2 Spinel Compound; 3.1.4.3 Olivine Compounds; 3.1.5 Thermal Stability of Cathode Materials; 3.1.5.1 Basics of Battery Safety; 3.1.5.2 Battery Safety and Cathode Materials; 3.1.5.3 Thermal Stability of Cathodes; 3.1.6 Prediction of Cathode Physical Properties and Cathode Design; 3.1.6.1 Understanding of First-Principles Calculation; 3.1.6.2 Prediction and Investigation of Electrode Physical Properties Using First-Principles Calculation

References 3.2 Anode Materials; 3.2.1 Development History of Anode Materials; 3.2.2 Overview of Anode Materials; 3.2.3 Types and Electrochemical Characteristics of Anode Materials; 3.2.3.1 Lithium Metal; 3.2.3.2 Carbon Materials; 3.2.3.3 Noncarbon Materials; 3.2.4 Conclusions; References; 3.3 Electrolytes; 3.3.1 Liquid Electrolytes; 3.3.1.1 Requirements of Liquid Electrolytes; 3.3.1.2 Components of Liquid Electrolytes; 3.3.1.3 Characteristics of Liquid Electrolytes; 3.3.1.4 Ionic Liquids; 3.3.1.5 Electrolyte Additives; 3.3.1.6 Enhancement of Thermal Stability for Electrolytes

3.3.1.7 Development Trends of Liquid Electrolytes 3.3.2 Polymer Electrolytes; 3.3.2.1 Types of Polymer Electrolytes; 3.3.2.2 Preparation of Polymer Electrolytes; 3.3.2.3 Characteristics of Polymer Electrolytes; 3.3.2.4 Development Trends of Polymer Electrolytes; 3.3.3 Separators; 3.3.3.1 Separator Functions; 3.3.3.2 Basic Characteristics of Separators; 3.3.3.3 Effects of Separators on Battery Assembly; 3.3.3.4 Oxidative Stability of Separators; 3.3.3.5 Thermal Stability of Separators; 3.3.3.6 Development of Separator Materials; 3.3.3.7 Separator Manufacturing Process

3.3.3.8 Prospects for Separators

Sommario/riassunto

Lithium secondary batteries have been key to mobile electronics since 1990. Large-format batteries typically for electric vehicles and energy storage systems are attracting much attention due to current energy and environmental issues. Lithium batteries are expected to play a central role in boosting green technologies. Therefore, a large number of scientists and engineers are carrying out research and development on lithium secondary batteries.The book is written in a straightforward fashion suitable for undergraduate and graduate students, as well as scientists, and engineer