|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910139600203321 |
|
|
Autore |
Lui S. H (Shaun H.), <1961-> |
|
|
Titolo |
Numerical analysis of partial differential equations [[electronic resource] /] / S.H. Lui |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hoboken, N.J., : Wiley, c2011 |
|
|
|
|
|
|
|
ISBN |
|
1-283-28277-1 |
9786613282774 |
1-118-11111-7 |
1-118-11113-3 |
1-118-11110-9 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (508 p.) |
|
|
|
|
|
|
Collana |
|
Pure and applied mathematics : a Wiley series of texts, monographs, and tracts |
|
|
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Differential equations, Partial - Numerical solutions |
Variational inequalities (Mathematics) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Numerical Analysis of Partial Differential Equations; Contents; Preface; Acknowledgments; 1 Finite Difference; 1.1 Second-Order Approximation for Δ; 1.2 Fourth-Order Approximation for Δ; 1.3 Neumann Boundary Condition; 1.4 Polar Coordinates; 1.5 Curved Boundary; 1.6 Difference Approximation for Δ2; 1.7 A Convection-Diffusion Equation; 1.8 Appendix: Analysis of Discrete Operators; 1.9 Summary and Exercises; 2 Mathematical Theory of Elliptic PDEs; 2.1 Function Spaces; 2.2 Derivatives; 2.3 Sobolev Spaces; 2.4 Sobolev Embedding Theory; 2.5 Traces; 2.6 Negative Sobolev Spaces |
2.7 Some Inequalities and Identities2.8 Weak Solutions; 2.9 Linear Elliptic PDEs; 2.10 Appendix: Some Definitions and Theorems; 2.11 Summary and Exercises; 3 Finite Elements; 3.1 Approximate Methods of Solution; 3.2 Finite Elements in 1D; 3.3 Finite Elements in 2D; 3.4 Inverse Estimate; 3.5 L2 and Negative-Norm Estimates; 3.6 Higher-Order Elements; 3.7 A Posteriori Estimate; 3.8 Quadrilateral Elements; 3.9 Numerical Integration; 3.10 Stokes Problem; 3.11 Linear Elasticity; |
|
|
|
|