|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910139519603321 |
|
|
Autore |
Anisimov V. V (Vladimir Vladislavovich) |
|
|
Titolo |
Switching processes in queueing models [[electronic resource] /] / Vladimir V. Anisimov |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
London ; ; ISTE ; ; Hoboken, NJ, : John Wiley & Sons, 2008 |
|
|
|
|
|
|
|
ISBN |
|
1-282-16515-1 |
9786612165153 |
0-470-61134-0 |
0-470-39395-5 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (347 p.) |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Telecommunication - Switching systems - Mathematical models |
Telecommunication - Traffic - Mathematical models |
Queuing theory |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Switching Processes in Queueing Models; Contents; Preface; Definitions; Chapter 1. Switching Stochastic Models; 1.1. Random processes with discrete component; 1.1.1. Markov and semi-Markov processes; 1.1.2. Processes with independent increments and Markov switching; 1.1.3. Processes with independent increments and semi-Markov switching; 1.2. Switching processes; 1.2.1. Definition of switching processes; 1.2.2. Recurrent processes of semi-Markov type (simple case); 1.2.3. RPSM with Markov switching; 1.2.4. General case of RPSM; 1.2.5. Processes with Markov or semi-Markov switching |
Chapter 3. Processes of Sums of Weakly-dependent Variables3.1. Limit theorems for processes of sums of conditionally independent random variables; 3.2. Limit theorems for sums with Markov switching; 3.2.1. Flows of rare events; 3.2.1.1. Discrete time; 3.2.1.2. Continuous time; 3.3. Quasi-ergodic Markov processes; 3.4. Limit theorems for non-homogenous Markov processes; 3.4.1. Convergence to Gaussian processes; 3.4.2. Convergence to processes with independent |
|
|
|
|