| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910139472603321 |
|
|
Autore |
Paul Clayton R. |
|
|
Titolo |
Inductance : loop and partial / / Clayton R. Paul |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hoboken, New Jersey : , : J. Wiley, , c2010 |
|
[Piscataqay, New Jersey] : , : IEEE Xplore, , [2009] |
|
|
|
|
|
|
|
|
|
ISBN |
|
1-118-21128-6 |
1-282-68659-3 |
9786612686597 |
0-470-56123-8 |
0-470-56122-X |
|
|
|
|
|
|
|
|
Edizione |
[1st edition] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (395 p.) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Inductance |
Induction coils |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Preface -- 1 Introduction -- 1.1 Historical Background -- 1.2 Fundamental Concepts of Lumped Circuits -- 1.3 Outline of the Book -- 1.4 "Loop" Inductance vs. "Partial" Inductance -- 2 Magnetic Fields of DC Currents (Steady Flow of Charge) -- 2.1 Magnetic Field Vectors and Properties of Materials -- 2.2 Gauss's Law for the Magnetic Field and the Surface Integral -- 2.3 The Biot-Savart Law -- 2.4 Ampére's Law and the Line Integral -- 2.5 Vector Magnetic Potential -- 2.5.1 Leibnitz's Rule: Differentiate Before You Integrate -- 2.6 Determining the Inductance of a Current Loop: -- A Preliminary Discussion -- 2.7 Energy Stored in the Magnetic Field -- 2.8 The Method of Images -- 2.9 Steady (DC) Currents Must Form Closed Loops -- 3 Fields of Time-Varying Currents (Accelerated Charge) -- 3.1 Faraday's Fundamental Law of Induction -- 3.2 Ampère's Law and Displacement Current -- 3.3 Waves, Wavelength, Time Delay, and Electrical Dimensions -- 3.4 How Can Results Derived Using Static (DC) Voltages and Currents be Used in Problems Where the Voltages and Currents are Varying with Time? -- 3.5 Vector Magnetic Potential for Time-Varying Currents -- 3.6 |
|
|
|
|
|
|
|
|
|
Conservation of Energy and Poynting's Theorem -- 3.7 Inductance of a Conducting Loop -- 4 The Concept of "Loop" Inductance -- 4.1 Self Inductance of a Current Loop from Faraday's Law of Induction -- 4.1.1 Rectangular Loop -- 4.1.2 Circular Loop -- 4.1.3 Coaxial Cable -- 4.2 The Concept of Flux Linkages for Multiturn Loops -- 4.2.1 Solenoid -- 4.2.2 Toroid -- 4.3 Loop Inductance Using the Vector Magnetic Potential -- 4.3.1 Rectangular Loop -- 4.3.2 Circular Loop -- 4.4 Neumann Integral for Self and Mutual Inductances Between Current Loops -- 4.4.1 Mutual Inductance Between Two Circular Loops -- 4.4.2 Self Inductance of the Rectangular Loop -- 4.4.3 Self Inductance of the Circular Loop -- 4.5 Internal Inductance vs. External Inductance -- 4.6 Use of Filamentary Currents and Current Redistribution Due to the Proximity Effect -- 4.6.1 Two-Wire Transmission Line. |
4.6.2 One Wire Above a Ground Plane -- 4.7 Energy Storage Method for Computing Loop Inductance -- 4.7.1 Internal Inductance of a Wire -- 4.7.2 Two-Wire Transmission Line -- 4.7.3 Coaxial Cable -- 4.8 Loop Inductance Matrix for Coupled Current Loops -- 4.8.1 Dot Convention -- 4.8.2 Multiconductor Transmission Lines -- 4.9 Loop Inductances of Printed Circuit Board Lands -- 4.10 Summary of Methods for Computing Loop Inductance -- 4.10.1 Mutual Inductance Between Two Rectangular Loops -- 5 The Concept of "Partial" Inductance -- 5.1 General Meaning of Partial Inductance -- 5.2 Physical Meaning of Partial Inductance -- 5.3 Self Partial Inductance of Wires -- 5.4 Mutual Partial Inductance Between Parallel Wires -- 5.5 Mutual Partial Inductance Between Parallel Wires that are Offset -- 5.6 Mutual Partial Inductance Between Wires at an Angle to Each Other -- 5.7 Numerical Values of Partial Inductances and Significance of Internal Inductance -- 5.8 Constructing Lumped Equivalent Circuits with Partial Inductances -- 6 Partial Inductances of Conductors of Rectangular Cross Section -- 6.1 Formulation for the Computation of the Partial Inductances of PCB Lands -- 6.2 Self Partial Inductance of PCB Lands -- 6.3 Mutual Partial Inductance Between PCB Lands -- 6.4 Concept of Geometric Mean Distance -- 6.4.1 Geometrical Mean Distance Between a Shape and Itself and the Self Partial Inductance of a Shape -- 6.4.2 Geometrical Mean Distance and Mutual Partial Inductance Between Two Shapes -- 6.5 Computing the High-Frequency Partial Inductances of Lands and Numerical Methods -- 7 "Loop" Inductance vs. "Partial" Inductance -- 7.1 Loop Inductance vs. Partial Inductance: Intentional Inductors vs. Nonintentional Inductors -- 7.2 To Compute "Loop" Inductance, the "Return Path" for the Current Must be Determined -- 7.3 Generally, There is no Unique Return Path for all Frequencies, Thereby Complicating the Calculation of a "Loop" Inductance -- 7.4 Computing the "Ground Bounce" and "Power Rail Collapse" of a Digital Power Distribution System Using "Loop" Inductances. |
7.5 Where Should the "Loop" Inductance of the Closed Current Path be Placed When Developing a Lumped-Circuit Model of a Signal or Power Delivery Path? -- 7.6 How Can a Lumped-Circuit Model of a Complicated System of a Large Number of Tightly Coupled Current Loops be Constructed Using "Loop" Inductance? -- 7.7 Modeling Vias on PCBs -- 7.8 Modeling Pins in Connectors -- 7.9 Net Self Inductance of Wires in Parallel and in Series -- 7.10 Computation of Loop Inductances for Various Loop Shapes -- 7.11 Final Example: Use of Loop and Partial Inductance to Solve a Problem -- Appendix A: Fundamental Concepts of Vectors -- A.1 Vectors and Coordinate Systems -- A.2 Line Integral -- A.3 Surface Integral -- A.4 Divergence -- A.4.1 Divergence Theorem -- A.5 Curl -- A.5.1 Stokes's Theorem -- A.6 Gradient of a Scalar Field -- A.7 Important Vector Identities -- A.8 Cylindrical Coordinate System -- A.9 Spherical Coordinate System -- |
|
|
|
|
|
|
|
|
|
|
|
Table of Identities, Derivatives, and Integrals Used in this Book -- References and Further Readings -- Index. |
|
|
|
|
|
|
Sommario/riassunto |
|
"Inductance is an unprecedented text, thoroughly discussing "loop" inductance as well as the increasingly important "partial" inductance. These concepts and their proper calculation are crucial in designing modern high-speed digital systems. World-renowned leader in electromagnetics Clayton Paul provides the knowledge and tools necessary to understand and calculate inductance." "With the present and increasing emphasis on high-speed digital systems and high-frequency analog systems, it is imperative that system designers develop an intimate understanding of the concepts and methods in this book. Inductance is a much-needed textbook designed for senior and graduate-level engineering students, as well as a hands-on guide for working engineers and professionals engaged in the design of high-speed digital and high-frequency analog systems."--BOOK JACKET. |
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNISA996208299603316 |
|
|
Titolo |
Sea trout [[electronic resource] ] : biology, conservation, and management : proceedings of First International Sea Trout Symposium, Cardiff, July 2004 / / edited by Graeme Harris and Nigel Milner |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Oxford ; ; Ames, Iowa, : Blackwell, 2006 |
|
|
|
|
|
|
|
ISBN |
|
1-281-31219-3 |
9786611312190 |
0-470-76219-5 |
0-470-99602-1 |
0-470-99601-3 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (522 p.) |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
|
|
|
|
|
Nota di contenuto |
|
SEA TROUT:BIOLOGY, CONSERVATIONAND MANAGEMENT; Contents; Foreword; Preface; Opening Address 1. Sea Trout: AWelsh Perspective; Opening Address 2. Sea Trout and the Environment Agency; 1 Setting the Scene - Sea Trout in England and Wales - A Personal Perspective; Section 1STOCKS AND FISHERIES; 2 Patterns of Anadromy and Migrations of Pacific Salmon and Trout at Sea; 3 A Review of the Status of Irish Sea Trout Stocks; 4 Characteristics of the Sea Trout Salmo trutta (L.) Stock Collapse in the River Ewe (Wester Ross, Scotland), in 1988-2001 |
5 Characteristics of the Sea Trout (Salmo trutta L.) Stocks from the Owengowla and Invermore Fisheries, Connemara,Western Ireland, and Recent Trends in Marine Survival6 Annual Variation in Age Composition, Growth and Abundance of Adult Sea Trout Returning to the River Dee at Chester, 1991-2003; 7 Sea Trout Stock Descriptions in England and Wales; 8 The Rod and Net Sea Trout Fisheries of England and Wales; 9 General Overview of Turkish Sea Trout (Salmo trutta L.) Populations; 10 The Status and Exploitation of Sea Trout on the Finnish Coast of the Gulf of Bothnia in the Baltic Sea |
11 Sea Trout (Salmo trutta L.) in European Salmon (Salmo salar L.) RiversSection 2GENETICS AND LIFE HISTORY; 12 Genetics of Sea Trout, with Particular Reference to Britain and Ireland; 13 The Genetic Basis of Smoltification: Functional Genomics Tools Facilitate the Search for the Needle in the Haystack; 14 Life History of the Anadromous Trout Salmo trutta; 15 Migration as a Life-History Strategy for the Sea Trout; 16 Life History of a SeaTrout (Salmo trutta L.) Population from the North-West Iberian Peninsula (River Ulla, Galicia, Spain) |
17 Review and Perspectives on Molecular Genetic Approaches to Sea Trout BiologySection 3POPULATION DYNAMICS, ECOLOGYAND BEHAVIOUR; 18 A 35-Year Study of Stock-Recruitment Relationships in a Small Population of Sea Trout: Assumptions, Implications and Limitations for Predicting Targets; 19 Characteristics of the Burrishoole Sea Trout Population: Census, Marine Survival, Enhancement and Stock...Recruitment Relationship, 1971-2003; 20 Population Dynamics and Stock-Recruitment Relationship of Sea Trout in the River Bresle, Upper Normandy, France; Section 4MANAGING STOCKS AND FISHERIES |
21 The Spawning Habitat Requirements of Sea Trout: A Multi-Scale Approach22 Research Activities and Management of Brown Trout and Sea Trout (Salmo trutta L.) in Denmark; 23 Stocking Sea Trout (Salmo trutta L.) in the River Shieldaig, Scotland; 24 Is Stocking with Sea Trout Compatible with the Conservation of Wild Trout (Salmo trutta L.)?; 25 Sea Lice Lepeophtheirus salmonis Infestations of Post-Smolt Sea Trout in Loch Shieldaig,Wester Ross, 1999-2003; 26 Comparison of Survival, Migration and Growth in Wild, Offspring from Wild (F1) and Domesticated Sea-Run Trout (Salmo trutta L.) |
27 The Rapid Establishment of a Resident Brown Trout Population from Sea Trout Progeny Stocked in a Fishless Stream |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
The Brown trout displays widely divergent life history strategies involving, variously, usage of streams, rivers, lakes, estuaries and the sea. The sea trout is the full sea-going form, it is very common and competes with salmon for the position of the most sought after migratory salmonid in many countries. Its use of freshwater, estuaries and coastal waters gives it a unique position as a sentinel species of environmental quality across these habitats. Although a commercially and recreationally important fish species, the management and scientific knowledge about sea trout has often been ov |
|
|
|
|
|
|
|
| |