1.

Record Nr.

UNISA990005662960203316

Autore

KANT, Immanuel

Titolo

12:  Schriften zur Antropologie, Geschichtsphilosophie, Politik und Padagogik, 2. / Immanuel Kant ; herausgegeben von Wilhelm Weischedel

Pubbl/distr/stampa

Frankfurt am Main : Suhrkamp, 1988

Edizione

[7. Aufl]

Descrizione fisica

P. 399-908 ; 18 cm

Collana

Suhrkamp Taschenbuch Wissenschaft ; 193

Disciplina

142.3

Collocazione

AA 142.3 KAN

Lingua di pubblicazione

Tedesco

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910136940303321

Titolo

Alternative energy and shale gas encyclopedia / / edited by Jay H. Lehr ; Jack Keeley, senior editor ; Thomas B. Kingery, information technology

Pubbl/distr/stampa

Hoboken, New Jersey : , : Wiley, , 2016

©2016

ISBN

1-119-06633-6

1-119-06635-2

1-119-06632-8

Descrizione fisica

1 online resource (1801 p.)

Collana

Wiley Series on Energy

Disciplina

621.04203

Soggetti

Renewable energy sources

Shale gas

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Includes index.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

2.2 NUMERICAL WEATHER PREDICTION MODELS2.3 PERSISTENCE MODELS; 2.4 CHOOSING FORECAST PARAMETERS; 2.5 STATISTICAL AND NEURAL NETWORK METHODS; 2.6 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS; 2.7 CASE STUDY; REFERENCES; 3 MAXIMIZING THE LOADING IN WIND TURBINE PLANTS: (A) THE BETZ LIMIT, (B) DUCTING THE TURBINE; 3.1 THE WIND TURBINE EFFICIENCY; 3.2 THE BETZ LIMIT; 3.3 THE DUCTED WIND TURBINE; REFERENCES; 4 MODELING WIND TURBINE WAKES FOR WIND FARMS; 4.1 INTRODUCTION; 4.2 EMPIRICAL METHODS TO ESTIMATE WAKE RECOVERY; 4.3 COMPUTATIONAL FLUID DYNAMICS; 4.4 ROTOR MODELING TECHNIQUES

7.6 ENVIRONMENTAL IMPACT7.7 CONCLUSIONS; 7.8 MARINE ENERGY2; NOTE; REFERENCES; 8 IMPACTS OF WIND FARMS ON WEATHER AND CLIMATE AT LOCAL AND GLOBAL SCALES; 8.1 OBSERVED IMPACTS; 8.2 HOW WIND TURBINES INTERACT WITH THE ATMOSPHERE; 8.3 HOW WIND FARMS ARE REPRESENTED IN WEATHER AND CLIMATE MODELS; 8.4 IMPACTS OF WIND FARMS ON LOCAL METEOROLOGY; 8.5 IMPACTS OF WIND FARMS ON REGIONAL AND GLOBAL CLIMATE; 8.6 MINIMIZING IMPACTS; 8.7 CONCLUSIONS AND DISCUSSIONS; REFERENCES; 9 POWER CURVES AND TURBULENT FLOW CHARACTERISTICS OF VERTICAL AXIS



WIND TURBINES; 9.1 RESIDENTIAL AND SMALL BUSINESS WIND POWER

11.1 INTRODUCTION

3.

Record Nr.

UNINA9910972127003321

Autore

Verhulst Ferdinand

Titolo

Nonlinear Differential Equations and Dynamical Systems / / by Ferdinand Verhulst

Pubbl/distr/stampa

Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1996

ISBN

3-642-61453-1

Edizione

[2nd ed. 1996.]

Descrizione fisica

1 online resource (X, 306 p. 2 illus.)

Collana

Universitext, , 2191-6675

Disciplina

515/.355

Soggetti

Mathematical analysis

Dynamics

Mathematical physics

System theory

Engineering mathematics

Engineering - Data processing

Analysis

Dynamical Systems

Theoretical, Mathematical and Computational Physics

Complex Systems

Mathematical and Computational Engineering Applications

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

1 Introduction -- 1.1 Definitions and notation -- 1.2 Existence and uniqueness -- 1.3 Gronwall’s inequality -- 2 Autonomous equations -- 2.1 Phase-space, orbits -- 2.2 Critical points and linearisation -- 2.3 Periodic solutions -- 2.4 First integrals and integral manifolds -- 2.5 Evolution of a volume element, Liouville’s theorem -- 2.6 Exercises -- 3 Critical points -- 3.1 Two-dimensional linear systems -- 3.2 Remarks on three-dimensional linear systems -- 3.3 Critical points of nonlinear equations -- 3.4 Exercises -- 4 Periodic solutions -- 4.1



Bendixson’s criterion -- 4.2 Geometric auxiliaries, preparation for the Poincaré-Bendixson theorem -- 4.3 The Poincaré-Bendixson theorem -- 4.4 Applications of the Poincaré-Bendixson theorem -- 4.5 Periodic solutions in ?n -- 4.6 Exercises -- 5 Introduction to the theory of stability -- 5.1 Simple examples -- 5.2 Stability of equilibrium solutions -- 5.3 Stability of periodic solutions -- 5.4 Linearisation -- 5.5 Exercises -- 6 Linear Equations -- 6.1 Equations with constant coefficients -- 6.2 Equations with coefficients which have a limit -- 6.3 Equations with periodic coefficients -- 6.4 Exercises -- 7 Stability by linearisation -- 7.1 Asymptotic stability of the trivial solution -- 7.2 Instability of the trivial solution -- 7.3 Stability of periodic solutions of autonomous equations -- 7.4 Exercises -- 8 Stability analysis by the direct method -- 8.1 Introduction -- 8.2 Lyapunov functions -- 8.3 Hamiltonian systems and systems with first integrals -- 8.4 Applications and examples -- 8.5 Exercises -- 9 Introduction to perturbation theory -- 9.1 Background and elementary examples -- 9.2 Basic material -- 9.3 Naïve expansion -- 9.4 The Poincaré expansion theorem -- 9.5 Exercises -- 10 The Poincaré-Lindstedt method -- 10.1 Periodic solutions of autonomous second-order equations -- 10.2 Approximation of periodic solutions on arbitrary long time-scales -- 10.3 Periodic solutions of equations with forcing terms -- 10.4 The existence of periodic solutions -- 10.5 Exercises -- 11 Themethod of averaging -- 11.1 Introduction -- 11.2 The Lagrange standard form -- 11.3 Averaging in the periodic case -- 11.4 Averaging in the general case -- 11.5 Adiabatic invariants -- 11.6 Averaging over one angle, resonance manifolds -- 11.7 Averaging over more than one angle, an introduction -- 11.8 Periodic solutions -- 11.9 Exercises -- 12 Relaxation Oscillations -- 12.1 Introduction -- 12.2 Mechanical systems with large friction -- 12.3 The van der Pol-equation -- 12.4 The Volterra-Lotka equations -- 12.5 Exercises -- 13 Bifurcation Theory -- 13.1 Introduction -- 13.2 Normalisation -- 13.3 Averaging and normalisation -- 13.4 Centre manifolds -- 13.5 Bifurcation of equilibrium solutions and Hopf bifurcation -- 13.6 Exercises -- 14 Chaos -- 14.1 Introduction and historical context -- 14.2 The Lorenz-equations -- 14.3 Maps associated with the Lorenz-equations -- 14.4 One-dimensional dynamics -- 14.5 One-dimensional chaos: the quadratic map -- 14.6 One-dimensional chaos: the tent map -- 14.7 Fractal sets -- 14.8 Dynamical characterisations of fractal sets -- 14.9 Lyapunov exponents -- 14.10 Ideas and references to the literature -- 15 Hamiltonian systems -- 15.1 Introduction -- 15.2 A nonlinear example with two degrees of freedom -- 15.3 Birkhoff-normalisation -- 15.4 The phenomenon of recurrence -- 15.5 Periodic solutions -- 15.6 Invariant tori and chaos -- 15.7 The KAM theorem -- 15.8 Exercises -- Appendix 1: The Morse lemma -- Appendix 2: Linear periodic equations with a small parameter -- Appendix 3: Trigonometric formulas and averages -- Appendix 4: A sketch of Cotton’s proof of the stable and unstable manifold theorem 3.3 -- Appendix 5: Bifurcations of self-excited oscillations -- Appendix 6: Normal forms of Hamiltonian systems near equilibria -- Answers and hints to the exercises -- References.

Sommario/riassunto

On the subject of differential equations many elementary books have been written. This book bridges the gap between elementary courses and research literature. The basic concepts necessary to study differential equations - critical points and equilibrium, periodic solutions, invariant sets and invariant manifolds - are discussed first. Stability theory is then developed starting with linearisation methods going back to Lyapunov and Poincaré. In the last four chapters more advanced topics like relaxation oscillations, bifurcation theory, chaos in



mappings and differential equations, Hamiltonian systems are introduced, leading up to the frontiers of current research: thus the reader can start to work on open research problems, after studying this book. This new edition contains an extensive analysis of fractal sets with dynamical aspects like the correlation- and information dimension. In Hamiltonian systems, topics like Birkhoff normal forms and the Poincaré-Birkhoff theorem on periodicsolutions have been added. There are now 6 appendices with new material on invariant manifolds, bifurcation of strongly nonlinear self-excited systems and normal forms of Hamiltonian systems. The subject material is presented from both the qualitative and the quantitative point of view, and is illustrated by many examples.