1.

Record Nr.

UNINA9910134856603321

Titolo

Contemporary planetary robotics : an approach toward autonomous systems / / edited by Yang Gao

Pubbl/distr/stampa

Weinheim, Germany : , : Wiley-VCH, , 2016

©2016

ISBN

3-527-68495-6

3-527-68494-8

3-527-68497-2

Descrizione fisica

1 online resource (429 p.)

Disciplina

629.892

Soggetti

Robotics

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references at the end of each chapters and index.

Nota di contenuto

Cover; Title Page; Copyright; Contents; List of Contributors; Chapter 1 Introduction; 1.1 Evolution of Extraterrestrial Exploration and Robotics; 1.2 Planetary Robotics Overview; 1.3 Scope and Organization of the Book; 1.4 Acknowledgments; Chapter 2 Planetary Robotic System Design; 2.1 Introduction; 2.2 A System Design Approach: From Mission Concept to Baseline Design; 2.2.1 Mission Scenario Definition; 2.2.2 Functional Analysis; 2.2.3 Requirements Definition and Review; 2.2.4 Design Drivers Identification; 2.2.5 Concept Evaluation and Trade-Off

2.3 Mission Scenarios: Past, Current, and Future2.3.1 Lander Missions; 2.3.1.1 Luna Sample-Return Landers; 2.3.1.2 Viking Landers; 2.3.1.3 Mars Surveyor Lander Family and Successors; 2.3.1.4 Huygens Lander; 2.3.1.5 Beagle 2 Lander; 2.3.1.6 Philae Lander; 2.3.2 Rover Missions; 2.3.2.1 Lunokhod 1 and 2 Rovers; 2.3.2.2 Prop-M Rover; 2.3.2.3 Sojourner Rover; 2.3.2.4 Spirit and Opportunity Rovers; 2.3.2.5 Curiosity Rover; 2.3.2.6 Chang'E 3 Rover; 2.3.2.7 ExoMars Rover; 2.3.2.8 Mars 2020 Rover; 2.3.3 Future Mission Concepts; 2.3.3.1 Toward New Business Models; 2.3.3.2 Medium-Term Mission Concepts

2.3.3.3 Long-Term Mission Ideas2.4 Environment-Driven Design Considerations; 2.4.1 Gravity; 2.4.2 Temperature; 2.4.3 Atmosphere



and Vacuum; 2.4.4 Orbital Characteristics; 2.4.4.1 Distance to the Sun; 2.4.4.2 Length of Days; 2.4.5 Surface Conditions; 2.4.5.1 Rocks; 2.4.5.2 Dusts; 2.4.5.3 Liquid; 2.4.6 Properties of Planetary Bodies and Moons; 2.5 Systems Design Drivers and Trade-Offs; 2.5.1 Mission-Driven System Design Drivers; 2.5.1.1 Mass; 2.5.1.2 Target Environment; 2.5.1.3 Launch Environment; 2.5.1.4 Surface Deployment; 2.5.1.5 Surface Operations

2.5.2 System Design Trade-Offs: A Case Study2.5.2.1 Mission Scenario Definition: MSR/SFR; 2.5.2.2 SFR System Design Drivers; 2.5.2.3 SFR Subsystem Design Drivers; 2.5.2.4 SFR Design Evaluation; 2.6 System Operation Options; 2.6.1 Operation Sequence; 2.6.2 Operational Autonomy; 2.6.2.1 Autonomous Functions; 2.6.2.2 Autonomy Levels: Teleoperation versus Onboard Autonomy; 2.7 Subsystem Design Options; 2.7.1 Power Subsystem; 2.7.1.1 Power Generation; 2.7.1.2 Power Storage; 2.7.2 Thermal Subsystem; 2.7.2.1 Sizing Warm/Cold Cases; 2.7.2.2 Heat Provision

2.7.2.3 Heat Management (Transport and Dissipation)2.7.2.4 Trade-Off Options; References; Chapter 3 Vision and Image Processing; 3.1 Introduction; 3.2 Scope of Vision Processing; 3.2.1 Onboard Requirements; 3.2.2 Mapping by Vision Sensors: Stereo as Core; 3.2.3 Physical Environment; 3.3 Vision Sensors and Sensing; 3.3.1 Passive Optical Vision Sensors; 3.3.2 Active Vision Sensing Strategies; 3.3.3 Dedicated Navigation Vision Sensors: Example Exomars; 3.3.3.1 Navigation (Perception/Stereo Vision); 3.3.3.2 Visual Localization and Slippage Estimation; 3.3.3.3 Absolute Localization

3.4 Vision Sensors Calibration