1.

Record Nr.

UNINA9910133450903321

Autore

Reinhardt Karen A

Titolo

Handbook of cleaning for semiconductor manufacturing [[electronic resource] ] : fundamentals and applications / / Karen A. Reinhardt, Richard F. Reidy

Pubbl/distr/stampa

Salem, Mass. ; ; Scrivener ; ; Hoboken, N.J., : John Wiley & Sons, Inc., c2011

ISBN

1-118-09951-6

1-283-37459-5

9786613374592

1-118-07173-5

1-61344-177-0

1-118-07174-3

Edizione

[1st edition]

Descrizione fisica

1 online resource (616 p.)

Collana

Wiley-Scrivener ; ; v.48

Altri autori (Persone)

ReidyRichard F. <1960->

Disciplina

621.38152

Soggetti

Semiconductors - Surfaces - Cleaning

Surface preparation

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Handbook of Cleaning for Semiconductor Manufacturing: Fundamentals and Applications; Contents; Foreword; Introduction; Part 1: Fundamentals; 1. Surface and Colloidal Chemical Aspects of Wet Cleaning; 1.1 Introduction to Surface Chemical Aspects of Cleaning; 1.2 Chemistry of Solid-Water Interface; 1.2.1 Surface Charging of Oxide Films in Aqueous Solutions; 1.2.2 Surface Charging of Silicon Nitride Films in Aqueous Solutions; 1.2.3 Electrified Interfaces: The Double Layer and Zeta Potential; 1.2.3.1 Oxide Films and Particles; 1.2.3.2 Nitride Films and Particles

1.3 Particulate Contamination: Theory and Measurements1.3.1 Effect of the Electric Double Layer Formation on Particulate Contamination; 1.3.2 Direct Measurement of Interaction Forces between Particles and Surfaces; 1.4 Influence of Surface Electrical Charges on Metal Ion Adsorption; 1.5 Wettability of Surfaces; 1.5.1 Surface Tension and Surface Energy; 1.5.2 Adsorption Characteristics and Wettability



Modification; 1.6 High Aspect Ratio Cleaning: Narrow Structures; 1.6.1 Rate of Liquid Penetration into Narrow Structures; 1.6.2 Enhancement of Liquid Penetration into Narrow Structures

1.7 Surface Tension Gradient: Application to Drying1.7.1 Isopropyl Alcohol Surface Tension Gradient Drying; 1.7.2 Water Layer After Drying; 1.7.3 Alternate Chemicals for Drying; 1.8 Summary; References; 2. The Chemistry of Wet Cleaning; 2.1 Introduction to Aqueous Cleaning; 2.1.1 Background of Aqueous Cleaning Chemistry; 2.2 Overview of Aqueous Cleaning Processes; 2.2.1 RCA Cleaning; 2.2.2 Modified RCA Processes; 2.2.3 Other Cleaning Processes; 2.3 The SC-1 Clean or APM; 2.3.1 Electrochemistry of SC-1; 2.3.2 Molecular Mechanism; 2.3.3 Etching Rate in APM; 2.3.4 Concentration Variations

2.3.5 Concentration Monitoring and Control2.3.6 APM-related Surface Roughening; 2.3.6.1 Vapor Etching; 2.3.6.2 Galvanic Etching and Masking; 2.3.6.3 Catalyzed H2O2 Depletion; 2.3.7 Metal-ion Contamination and Complexing Agents; 2.3.8 Diluted APM; 2.4 The SC-2 clean or HPM; 2.4.1 Particle Deposition; 2.4.2 Hydrogen Peroxide Decomposition in SC-2; 2.4.3 Hydrochloric Acid Fumes; 2.4.4 Diluted HC1; 2.5 Sulfuric Acid-Hydrogen Peroxide Mixture; 2.5.1 Stripping and Cleaning Mechanism; 2.5.1.1 Dissolution Reaction; 2.5.1.2 Discoloration Reaction; 2.5.2 Particulate and Sulfate Contamination

2.5.3 Alternatives2.5.3.1 Modification of SPM; 2.5.3.2 Sulfur Trioxide; 2.6 Hydrofluoric Acid; 2.6.1 Hydrogen Passivation; 2.6.2 Etching Rate Control; 2.6.3 Bath Monitoring; 2.6.3.1 Conductivity; 2.6.3.2 Near Infrared; 2.6.4 Contamination; Acknowledgments; References; 3. The Chemistry of Wet Etching; 3.1 Introduction and Overview; 3.1.1 Definition of Etching; 3.1.2 The Physics of Wet Etching; 3.1.2.1 Difference in Bond Strength; 3.1.2.2 Absence of the Proper Reactant; 3.1.2.3 Formation of Inhibiting Coatings; 3.2 Silicon Dioxide Etching; 3.2.1 Hydrofluoric Acid Etching

3.2.2 Water-based Etching

Sommario/riassunto

This comprehensive volume provides an in-depth discussion of the fundamentals of cleaning and surface conditioning of semiconductor applications such as high-k/metal gate cleaning, copper/low-k cleaning, high dose implant stripping, and silicon and SiGe passivation. The theory and fundamental physics associated with wet etching and wet cleaning is reviewed, plus the surface and colloidal aspects of wet processing. Formulation development practices and methodology are presented along with the applications for preventing copper corrosion, cleaning aluminum lines, and other sensitive layers. This