1.

Record Nr.

UNINA9910132987003321

Autore

Mininni Giuseppe

Titolo

Psicologia e media / / Giuseppe Mininni

Pubbl/distr/stampa

Roma [etc.], : GLF editori Laterza, 2004

ISBN

88-420-7470-5

Edizione

[1. ed.]

Descrizione fisica

xiii, 161 p. ; ; 21 cm

Collana

Percorsi ; ; 74

Disciplina

153

302

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

G. Mininni, professor at the University of Bari.

Nota di bibliografia

Includes bibliographical references.



2.

Record Nr.

UNINA9910155122603321

Autore

Jensen Mads Dagnis.

Titolo

EU presidencies between politics and administration : the governmentality of the Polish, Danish and Cypriot trio presidency in 2011-2012 / / Mads Dagnis Jensen and Peter Nedergaard

Pubbl/distr/stampa

Abingdon, Oxon ; ; New York, N.Y. : , : Routledge, , 2017

ISBN

1-315-69054-3

1-317-42743-2

1-317-42742-4

Edizione

[1st ed.]

Descrizione fisica

1 online resource (140 pages) : illustrations

Collana

Routledge studies on government and the European Union ; ; 7

Altri autori (Persone)

NedergaardPeter <1957->

Disciplina

341.242/2090512

341.2422090512

Soggetti

Poland Politics and government 21st century

Denmark Politics and government 21st century

Cyprus Politics and government 21st century

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

1. Introduction : EU presidencies between politics and administration -- 2. The early preparations phase : creating the foundation for the EU presidencies -- 3. The intensive preparations phase : putting the EU presidencies on track -- 4. The execution phase : managing the presidencies -- 5. The evaluation phase : transfer to the next membe state and lessons learned from the presidencies -- 6. Conclusions.



3.

Record Nr.

UNINA9910583028003321

Autore

Subramani Karthikeyan

Titolo

Emerging Nanotechnologies in Dentistry : Processes, Materials and Applications

Pubbl/distr/stampa

Saint Louis : , : Elsevier, , 2017

©2018

ISBN

9780128122914

0128122919

Edizione

[2nd ed.]

Descrizione fisica

1 online resource (497 pages)

Altri autori (Persone)

AhmedWaqar

Disciplina

617.6

Soggetti

Dentistry - Technological innovations

Nanotechnology

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Front Cover -- Emerging Nanotechnologies in Dentistry -- Copyright Page -- Dedication -- Contents -- List of Contributors -- Foreword -- Acknowledgments -- 1 Nanotechnology and its applications in dentistry-An introduction -- 1.1 Introduction -- 1.2 Nanotechnology Approaches -- 1.3 Nanotechnology to Nanomanufacturing -- 1.3.1 Top-Down Approach -- 1.3.2 Bottom-Up Approach -- 1.4 Nanodentistry -- 1.5 Future Directions and Conclusions -- References -- 2 Nanoparticles for dental materials: Synthesis, analysis, and applications -- 2.1 Introduction: Why Use Nanoparticles? -- 2.2 Synthesis of Nanoparticles -- 2.2.1 Synthesis by Mechanical Attrition -- 2.2.2 Synthesis Through Sol-Gel Process -- 2.2.2.1 Functionalization of oxide nanoparticles -- 2.2.3 Synthesis of Silsesquioxane Nanoparticles -- 2.2.4 Synthesis of Polymer-Templated Nanoparticles -- 2.3 Examples of Dental Materials Using Nanoparticles -- 2.3.1 Nanocomposites Containing Oxide Nanoparticles -- 2.3.1.1 Nanofill composites -- 2.3.1.2 Nanohybrid composites -- 2.3.2 Silsequioxane-Based Composites -- 2.3.3 Calcium Phosphate and Calcium Fluoride Nanoparticles-Based Composites -- 2.3.4 Nanoparticles in Glass Ionomer Systems -- 2.3.5 Nanotechnology in Dental Adhesives -- 2.4 Selected Properties of Dental Materials Containing Nanoparticles -- 2.4.1 Optical Properties -- 2.4.2 Wear Properties -- 2.4.3 From B.D.



Craig, S.B. Mitra, G.A. Kobussen, M.C. Doruff, H.L. Lechuga, M.R. Atkinson, Polish Retention Comparison of ... -- 2.5 Clinical Experience With Dental Materials Containing Nanoparticles -- 2.6 Conclusions -- References -- 3 Antimicrobial nanoparticles in restorative composites -- 3.1 Introduction -- 3.2 Antibacterial Restorative Composites -- 3.2.1 Filler Phase Modification -- 3.2.1.1 Released antibacterial agents -- 3.2.1.2 Nonreleased antibacterial agents -- 3.2.2 Matrix Phase Modification.

3.2.2.1 Released antibacterial agents -- 3.2.2.2 Nonreleased antibacterial agents -- 3.3 Antimicrobial Macromolecules -- 3.3.1 Polycationic Disinfectants -- 3.3.2 Polyethyleneimine -- 3.4 Nanoparticles -- 3.4.1 Polyethylenimine Nanoparticles -- 3.4.1.1 Synthesis -- 3.4.1.2 Characterization -- 3.4.1.3 Incorporation of polyethyleneimine nanoparticles -- 3.5 Conclusions -- References -- 4 Nanotechnology in operative dentistry: A perspective approach of history, mechanical behavior, and clinical application -- 4.1 Introduction -- 4.2 Historical Review: Nanotechnology Applications in Operative Dentistry -- 4.3 Biomimetics -- 4.4 Nanotechnology in CAD/CAM -- 4.5 Fillers in Composite Resins -- 4.6 SEM and EDS Evaluations -- 4.7 Filler Weight Content (wt%) -- 4.8 Water Sorption -- 4.9 Mechanical Behavior -- 4.9.1 Compressive Strength -- 4.9.2 Diametral Tensile Strength -- 4.9.3 Flexural Strength and Flexural Modulus -- 4.9.4 Microhardness -- 4.9.5 Nanohardness -- 4.9.6 Wear Resistance -- 4.10 Clinical Application -- 4.11 Conclusions -- Acknowledgments -- References -- 5 Impact of nanotechnology on dental implants -- 5.1 Introduction -- 5.2 Nanoscale Surface Modifications -- 5.3 Interactions of Surface Dental Implants With Blood -- 5.4 Interactions Between Surfaces and MSCs -- 5.4.1 Origin of MSCs -- 5.4.2 Migration, Adhesion, and Proliferation -- 5.4.3 Differentiation -- 5.5 Tissue Integration -- 5.6 Conclusion -- Acknowledgments -- References -- 6 Titanium surface modification techniques for dental implants-From microscale to nanoscale -- 6.1 Introduction -- 6.2 Titanium Surface Modification Methods -- 6.2.1 Mechanical Modification of Titanium Surface -- 6.2.2 Physicochemical Modification of Titanium Surface -- 6.2.3 Biochemical Modification of Titanium Surface -- 6.2.3.1 Osteoinductive biomolecular cues.

6.2.3.2 Microscale and nanoscale coating of hydroxyapatite/calcium phosphate/alumina -- 6.2.3.3 Organic nanoscale self-assembled monolayers (SAMs) -- 6.2.3.4 Hydrogels on titanium surface -- 6.2.3.5 Antibacterial titanium surfaces -- 6.2.4 Physical Modification of Titanium Surface -- 6.3 Recent Techniques -- 6.3.1 Discrete Crystalline Deposition (DCD) -- 6.3.2 Laser Ablation -- 6.3.3 Titanium Oxide Blasted and Acid-Etched Implants -- 6.3.4 Photofunctionalization -- 6.4 Limitations & Conclusion -- Acknowledgments -- References -- 7 Titanium nanotubes as carriers of osteogenic growth factors and antibacterial drugs for applications in dental implantology -- 7.1 Introduction -- 7.2 Titanium Nanotubes -- 7.3 TiO2 Nanotubes for Implant Fabrication -- 7.4 Functionalization of TiO2 Nanotubes with Growth Factors and Antibacterial/Antiinflammatory Drugs -- 7.5 Recent Advancements -- 7.6 Conclusions -- References -- 8 Cellular responses to nanoscale surface modifications of titanium implants for dentistry and bone tissue engineering appl... -- 8.1 Introduction -- 8.2 Nanotopography Generated from Surface Modification of Ti Implants -- 8.2.1 Surface Modification of Ti Implants With Inorganic Materials/Nanoparticles -- 8.2.2 Surface Modifications of Ti Implants With Polymers -- 8.3 Nanotopography and Protein Absorption -- 8.4 Nanotopography Alters Osteoblast Responses -- 8.4.1 Cell Morphology -- 8.4.2 Cell Adhesion



-- 8.4.3 Cell Proliferation -- 8.4.4 Bioactive Molecules -- 8.4.5 Osseointegration -- 8.5 Nanotopography and Stem Cell Responses -- 8.5.1 Effects of Nanotopography on Endothelial Progenitor Cells -- 8.5.2 Effects of Nanotopography on Bone Marrow Stem Cells -- 8.6 Conclusions -- References -- 9 Corrosion resistance of Ti-6Al-4V with nanostructured TiO2 coatings -- 9.1 Introduction -- 9.1.1 SiO2-CaO Coatings on Ti-6Al-4V Alloys.

9.1.2 SiO2 and SiO2-TiO2 Intermediate Coatings on Titanium and Ti-6Al-4V Alloy -- 9.1.3 Coated Hydroxyapatite on Ti-6Al-4V by Electrophoretic Deposition -- 9.1.4 Double-Layer Glass-Ceramic Coatings on Ti-6Al-4V -- 9.2 Nanostructured TiO2 Deposited on Ti-6Al-4V -- 9.2.1 Preparation of the Ti-6Al-4V Electrode -- 9.2.2 TiO2 Nanoparticles Coating -- 9.3 Characterization Techniques -- 9.3.1 Scanning Electron Microscopy -- 9.3.2 Raman Microscopy -- 9.4 Corrosion Test With Electrochemical Techniques -- 9.4.1 Open-Circuit Voltage (OCV) and Tafel Analysis -- 9.4.2 Electrochemical Impedance Spectroscopy -- 9.5 Conclusion -- References -- 10 Multiwalled Carbon nanotubes/hydroxyapatite nanoparticles incorporated GTR membranes -- 10.1 Introduction -- 10.2 Periodontal Defects and GTR -- 10.2.1 Studies Using Nonresorbable Membranes -- 10.2.2 Studies Using Bioresorbable Membranes -- 10.2.3 Layer-Designed Membranes for GTR -- 10.2.4 Cell-Sheet-Based Technology for GTR -- 10.3 Use of Electrospinning for Preparation of Nanocomposites -- 10.3.1 Electrospinning -- 10.3.2 Carbon Nanotubes Incorporated Into Nanofibers -- 10.3.3 Organic-Inorganic Composite Nanofibers -- 10.4 GTR Membranes Based on Electrospun CNT/HA Nanoparticles Incorporated Composite Nanofibers -- 10.4.1 Fabrication of MWCNTs/HA Hybrids -- 10.4.2 Electrospun Nanofibers With Different Fiber Arrangements -- 10.4.3 Fabrication of PLLA/MWCNTs/HA Composite Nanofibers -- 10.4.4 Characterization of PLLA/MWCNTs/HA Composite Nanofibers -- 10.4.5 Cell Culture on PLLA/MWCNTs/HA Composite Nanofibers Membranes -- 10.4.6 In Vivo Implantation of PLLA/MWCNTs/HA Membranes -- 10.5 Conclusions -- References -- 11 Nanoapatitic composite scaffolds for stem cell delivery and bone tissue engineering -- 11.1 Introduction -- 11.2 Development of Nanoapatitic and Macroporous Scaffolds -- 11.3 Cell Infiltration into Scaffold.

11.4 Biomimetic Nanoapatite-Collagen Fiber Scaffold -- 11.5 Fast Fracture of Nanoapatite Scaffold -- 11.6 Fatigue of Nanoapatite Scaffold -- 11.7 Nanoapatite Scaffold-Human Umbilical Cord Stem Cell Interactions -- 11.8 Seeding Bone Marrow Stem Cells on Nanoapatite Scaffolds -- 11.9 Conclusions -- Acknowledgments -- References -- 12 Self-assembly of proteins and peptides and their applications in bionanotechnology and dentistry -- 12.1 Introduction -- 12.2 Mechanism of Molecular Self-Assembly -- 12.3 Classification of Self-Assembly -- 12.4 Self-Assembly of Proteins and Peptides -- 12.5 Bionanotechnology Applications -- 12.6 Peptide Nanofibers, Nanotubes, and Nanowires -- 12.7 Three-Dimensional Peptide Matrix Scaffolds -- 12.8 Advantages and Limitations of Self-Assembling Peptide Matrix Scaffolds -- 12.9 Self-Assembly in Regenerative Biology and Dentistry -- 12.10 Conclusions -- References -- 13 Surface engineering of dental tools with diamond for enhanced life and performance -- 13.1 Tooth Materials -- 13.2 Dental Burs -- 13.3 Chemical Vapor Deposition of Diamond Films Onto Dental Burs -- 13.3.1 Plasma-Enhanced CVD -- 13.3.1.1 Microwave plasma-enhanced CVD -- 13.3.1.2 RF plasma-enhanced CVD -- 13.3.1.3 DC plasma-enhanced CVD -- 13.3.2 Hot Filament CVD -- 13.3.2.1 Growth mechanisms -- 13.3.2.2 Filament characteristics -- 13.3.2.3 Diamond



nucleation process -- 13.3.3 Controlling Structure and Morphology -- 13.3.3.1 Effects of temperature -- 13.3.3.2 Effect of negative BEN on the dental bur -- 13.3.3.3 Effects of substrate preparation on diamond deposition -- 13.4 Bur Performance Investigations -- 13.4.1 Tool Preparation -- 13.4.2 CVD Diamond Deposition on the Dental Burs -- 13.4.3 Dental Bur Machining: Drilling Experiments -- 13.4.4 Dental Bur Machining: Machining Experiments on Human Teeth -- 13.4.5 Performance Testing -- 13.4.6 Drilling Experiments.

13.4.7 Performance Results.