| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910132336603321 |
|
|
Autore |
Parker Jeffrey S. |
|
|
Titolo |
Low-energy lunar trajectory design / / Jeffrey S. Parker and Rodney L. Anderson |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hoboken, New Jersey : , : Wiley, , 2014 |
|
©2014 |
|
|
|
|
|
|
|
|
|
ISBN |
|
1-118-85531-0 |
1-118-85506-X |
1-118-85497-7 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (437 p.) |
|
|
|
|
|
|
Collana |
|
JPL Deep-Space Communications and Navigation Series |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Lunar probes - Trajectories |
Space flight to the moon - Cost control |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover; Title Page; Copyright Page; CONTENTS; Foreword; Preface; Acknowledgments; Authors; 1 Introduction and Executive Summary; 1.1 Purpose; 1.2 Organization; 1.3 Executive Summary; 1.3.1 Direct, Conventional Transfers; 1.3.2 Low-Energy Transfers; 1.3.3 Summary: Low-Energy Transfers to Lunar Libration Orbits; 1.3.4 Summary: Low-Energy Transfers to Low Lunar Orbits; 1.3.5 Summary: Low-Energy Transfers to the Lunar Surface; 1.4 Background; 1.5 The Lunar Transfer Problem; 1.6 Historical Missions; 1.6.1 Missions Implementing Direct Lunar Transfers |
1.6.2 Low-Energy Missions to the Sun-Earth Lagrange Points1.6.3 Missions Implementing Low-Energy Lunar Transfers; 1.7 Low-Energy Lunar Transfers; 2 Methodology; 2.1 Methodology Introduction; 2.2 Physical Data; 2.3 Time Systems; 2.3.1 Dynamical Time, ET; 2.3.2 International Atomic Time, TAI; 2.3.3 Universal Time, UT; 2.3.4 Coordinated Universal Time, UTC; 2.3.5 Lunar Time; 2.3.6 Local True Solar Time, LTST; 2.3.7 Orbit Local Solar Time, OLST; 2.4 Coordinate Frames; 2.4.1 EME2000; 2.4.2 EMO2000; 2.4.3 Principal Axis Frame; 2.4.4 IAU Frames; 2.4.5 Synodic Frames; 2.5 Models; 2.5.1 CRTBP |
2.5.2 Patched Three-Body Model2.5.3 JPL Ephemeris; 2.6 Low-Energy |
|
|
|
|
|
|
|
|
|
|
|
Mission Design; 2.6.1 Dynamical Systems Theory; 2.6.2 Solutions to the CRTBP; 2.6.3 Poincaré Maps; 2.6.4 The State Transition and Monodromy Matrices; 2.6.5 Differential Correction; 2.6.6 Constructing Periodic Orbits; 2.6.7 The Continuation Method; 2.6.8 Orbit Stability; 2.6.9 Examples of Practical Three-Body Orbits; 2.6.10 Invariant Manifolds; 2.6.11 Orbit Transfers; 2.6.12 Building Complex Orbit Chains; 2.6.13 Discussion; 2.7 Tools; 2.7.1 Numerical Integrators; 2.7.2 Optimizers; 2.7.3 Software |
3 Transfers to Lunar Libration Orbits3.1 Executive Summary; 3.2 Introduction; 3.3 Direct Transfers Between Earth and Lunar Libration Orbits; 3.3.1 Methodology; 3.3.2 The Perigee-Point Scenario; 3.3.3 The Open-Point Scenario; 3.3.4 Surveying Direct Lunar Halo Orbit Transfers; 3.3.5 Discussion of Results; 3.3.6 Reducing the ΔV Cost; 3.3.7 Conclusions; 3.4 Low-Energy Transfers Between Earth and Lunar Libration Orbits; 3.4.1 Modeling a Low-Energy Transfer using Dynamical Systems Theory; 3.4.2 Energy Analysis of a Low-Energy Transfer |
3.4.3 Constructing a Low-Energy Transfer in the Patched Three-Body Model3.4.4 Constructing a Low-Energy Transfer in the Ephemeris Model of the Solar System; 3.4.5 Families of Low-Energy Transfers; 3.4.6 Monthly Variations in Low-Energy Transfers; 3.4.7 Transfers to Other Three-Body Orbits; 3.5 Three-Body Orbit Transfers; 3.5.1 Transfers from an LL2 Halo Orbit to a Low Lunar Orbit; 4 Transfers to Low Lunar Orbits; 4.1 Executive Summary; 4.2 Introduction; 4.3 Direct Transfers Between Earth and Low Lunar Orbit; 4.4 Low-Energy Transfers Between Earth and Low Lunar Orbit; 4.4.1 Methodology |
4.4.2 Example Survey |
|
|
|
|
|
|
Sommario/riassunto |
|
<ul><li>Surveys thousands of possible trajectories that may be used to transfer spacecraft between Earth and the moon, including transfers to lunar libration orbits, low lunar orbits, and the lunar surface</li><li>Provides information about the methods, models, and tools used to design low-energy lunar transfers</li><li>Includes discussion about the variations of these transfers from one month to the next, and the important operational aspects of implementing a low-energy lunar transfer</li><li>Additional discussions address navigation, station-keeping, and spacecraft systems issues</li></ul> |
|
|
|
|
|
|
|
| |