| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910132334103321 |
|
|
Autore |
Appriou Alain |
|
|
Titolo |
Uncertainty theories and multisensor data fusion / / Alain Appriou |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
London, [England] ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014 |
|
©2014 |
|
|
|
|
|
|
|
|
|
ISBN |
|
1-118-57867-8 |
1-118-57863-5 |
1-118-57857-0 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (278 p.) |
|
|
|
|
|
|
Collana |
|
Instrumentation and measurement series |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover; Title Page; Copyright; Contents; Introduction; Chapter 1. Multisensor Data Fusion; 1.1. Issues at stake; 1.2. Problems; 1.2.1. Interpretation and modeling of data; 1.2.2. Reliability handling; 1.2.3. Knowledge propagation; 1.2.4. Matching of ambiguous data; 1.2.5. Combination of sources; 1.2.6. Decision-making; 1.3. Solutions; 1.3.1. Panorama of useful theories; 1.3.2. Process architectures; 1.4. Position of multisensor data fusion; 1.4.1. Peculiarities of the problem; 1.4.2. Applications of multisensor data fusion; Chapter 2. Reference Formalisms; 2.1. Probabilities; 2.2. Fuzzy sets |
2.3. Possibility theory2.4. Belief functions theory; 2.4.1. Basic functions; 2.4.2. A few particularly useful cases; 2.4.3. Conditioning/deconditioning; 2.4.4. Refinement/coarsening; Chapter 3. Set Management and Information Propagation; 3.1. Fuzzy sets: propagation of imprecision; 3.2. Probabilities and possibilities: the same approach to uncertainty; 3.3. Belief functions: an overarching vision in terms of propagation; 3.3.1. A generic operator: extension; 3.3.2. Elaboration of a mass function with minimum specificity; 3.3.3. Direct exploitation of the operator of extension |
3.4. Example of application: updating of knowledge over timeChapter 4. Managing The Reliability of Information; 4.1. Possibilistic view; 4.2. Discounting of belief functions; 4.3. Integrated processing of reliability; |
|
|
|
|
|
|
|
|
|
|
|
4.4. Management of domains of validity of the sources; 4.5. Application to fusion of pixels from multispectral images; 4.6. Formulation for problems of estimation; Chapter 5. Combination of Sources; 5.1. Probabilities: a turnkey solution, Bayesian inference; 5.2. Fuzzy sets: a grasp of axiomatics; 5.3. Possibility theory: a simple approach to the basic principles |
5.4. Theory of belief functions: conventional approaches5.5. General approach to combination: any sets and logics; 5.6. Conflict management; 5.7. Back to Zadeh's paradox; Chapter 6. Data Modeling; 6.1. Characterization of signals; 6.2. Probabilities: immediate taking into account; 6.3. Belief functions: an open-ended and overarching framework; 6.3.1. Integration of data into the fusion process; 6.3.2. Generic problem: modeling of Cij values; 6.3.3. Modeling measurements with stochastic learning; 6.3.4. Modeling measurements with fuzzy learning; 6.3.5. Overview of models for belief functions |
6.4. Possibilities: a similar approach6.5. Application to a didactic example of classification; Chapter 7. Classification: Decision-Making And Exploitation of the Diversity of Information Sources; 7.1. Decision-making: choice of the most likely hypothesis; 7.2. Decision-making: determination of the most likely set of hypotheses; 7.3. Behavior of the decision operator: some practical examples; 7.4. Exploitation of the diversity of information sources: integration of binary comparisons |
7.5. Exploitation of the diversity of information sources: classification on the basis of distinct but overlapping sets |
|
|
|
|
|
|
Sommario/riassunto |
|
Addressing recent challenges and developments in this growing field, Multisensor Data Fusion Uncertainty Theory first discusses basic questions such as: Why and when is multiple sensor fusion necessary? How can the available measurements be characterized in such a case? What is the purpose and the specificity of information fusion processing in multiple sensor systems? Considering the different uncertainty formalisms, a set of coherent operators corresponding to the different steps of a complete fusion process is then developed, in order to meet the requirements identified in the first |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNIORUON00450428 |
|
|
Titolo |
Le monde en 10/18 |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Paris union Générale d'Éditions. |
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Collezione |
|
|
|
|
|
3. |
Record Nr. |
UNISA996208188703316 |
|
|
Titolo |
Rivista di studi fenici |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Roma, : Consiglio nazionale delle ricerche |
|
|
|
|
|
|
|
ISSN |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Periodico |
|
|
|
|
| |