1.

Record Nr.

UNINA9910132211103321

Autore

Du Dingzhu

Titolo

Theory of computational complexity / / Ding-Zhu Du, Ker-I Ko

Pubbl/distr/stampa

Hoboken, New Jersey : , : Wiley, , 2014

©2014

ISBN

1-118-59509-2

1-118-59303-0

Edizione

[Second edition.]

Descrizione fisica

1 online resource (514 p.)

Collana

Wiley Series in Discrete Mathematics and Optimization

Disciplina

511.3/52

Soggetti

Computational complexity

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Cover; Title Page; Contents; Preface; Notes on the Second Edition; Part I Uniform Complexity; Chapter 1 Models of Computation and Complexity Classes; 1.1 Strings, Coding, and Boolean Functions; 1.2 Deterministic Turing Machines; 1.3 Nondeterministic Turing Machines; 1.4 Complexity Classes; 1.5 Universal Turing Machine; 1.6 Diagonalization; 1.7 Simulation; Exercises; Historical Notes; Chapter 2 NP-Completeness; 2.1 NP; 2.2 Cook's Theorem; 2.3 More NP-Complete Problems; 2.4 Polynomial-Time Turing Reducibility; 2.5 NP-Complete Optimization Problems; Exercises; Historical Notes

Chapter 3 The Polynomial-Time Hierarchy and Polynomial Space3.1 Nondeterministic Oracle Turing Machines; 3.2 Polynomial-Time Hierarchy; 3.3 Complete Problems in PH; 3.4 Alternating Turing Machines; 3.5 PSPACE-Complete Problems; 3.6 EXP-Complete Problems; Exercises; Historical Notes; Chapter 4 Structure of NP; 4.1 Incomplete Problems in NP; 4.2 One-Way Functions and Cryptography; 4.3 Relativization; 4.4 Unrelativizable Proof Techniques; 4.5 Independence Results; 4.6 Positive Relativization; 4.7 Random Oracles; 4.8 Structure of Relativized NP; Exercises; Historical Notes

Part II Nonuniform ComplexityChapter 5 Decision Trees; 5.1 Graphs and Decision Trees; 5.2 Examples; 5.3 Algebraic Criterion; 5.4 Monotone Graph Properties; 5.5 Topological Criterion; 5.6 Applications of the Fixed Point Theorems; 5.7 Applications of Permutation Groups; 5.8 Randomized Decision Trees; 5.9 Branching Programs; Exercises;



Historical Notes; Chapter 6 Circuit Complexity; 6.1 Boolean Circuits; 6.2 Polynomial-Size Circuits; 6.3 Monotone Circuits; 6.4 Circuits with Modulo Gates; 6.5 NC; 6.6 Parity Function; 6.7 P-Completeness; 6.8 Random Circuits and RNC; Exercises; Historical Notes

Chapter 7 Polynomial-Time Isomorphism7.1 Polynomial-Time Isomorphism; 7.2 Paddability; 7.3 Density of  NP-Complete Sets; 7.4 Density of  EXP-Complete Sets; 7.5 One-Way Functions and Isomorphism in  EXP; 7.6 Density of  P-Complete Sets; Exercises; Historical Notes; Part III Probabilistic Complexity; Chapter 8 Probabilistic Machines and Complexity Classes; 8.1 Randomized Algorithms; 8.2 Probabilistic Turing Machines; 8.3 Time Complexity of Probabilistic Turing Machines; 8.4 Probabilistic Machines with Bounded Errors; 8.5 BPP and P; 8.6 BPP and NP; 8.7 BPP and the Polynomial-Time Hierarchy

8.8 Relativized Probabilistic Complexity ClassesExercises; Historical Notes; Chapter 9 Complexity of Counting; 9.1 Counting Class #P; 9.2 #P-Complete Problems; 9.3 oplus P and the Polynomial-Time Hierarchy; 9.4 #P and the Polynomial-Time Hierarchy; 9.5 Circuit Complexity and Relativized oplus P and #P; 9.6 Relativized Polynomial-Time Hierarchy; Exercises; Historical Notes; Chapter 10 Interactive Proof Systems; 10.1 Examples and Definitions; 10.2 Arthur-Merlin Proof Systems; 10.3 AM Hierarchy Versus Polynomial-Time Hierarchy; 10.4 IP Versus AM; 10.5 IP Versus PSPACE; Exercises

Historical Notes

Sommario/riassunto

Praise for the First Edition  ""...complete, up-to-date coverage of computational complexity theory...the book promises to become the standard reference on computational complexity."" -Zentralblatt MATH  A thorough revision based on advances in the field of computational complexity and readers' feedback, the Second Edition of Theory of Computational Complexity presents updates to the principles and applications essential to understanding modern computational complexity theory. The new edition continues to serve as a comprehensive resource on the use of