|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910132202003321 |
|
|
Autore |
Servín Manuel |
|
|
Titolo |
Fringe pattern analysis for optical metrology : theory, algorithms, and applications / / Manuel Servin, J. Antonio Quiroga, and J. Moises Padilla |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Weinheim, Germany : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2014 |
|
©2014 |
|
|
|
|
|
|
|
|
|
ISBN |
|
3-527-68110-8 |
3-527-68107-8 |
3-527-68108-6 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (345 p.) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Diffraction patterns - Data processing |
Image processing - Data processing |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Fringe Pattern Analysis for Optical Metrology; Contents; Preface; List of Symbols and Acronyms; Chapter 1 Digital Linear Systems; 1.1 Introduction to Digital Phase Demodulation in Optical Metrology; 1.1.1 Fringe Pattern Demodulation as an Ill-Posed Inverse Problem; 1.1.2 Adding a priori Information to the Fringe Pattern: Carriers; 1.1.3 Classification of Phase Demodulation Methods in Digital Interferometry; 1.2 Digital Sampling; 1.2.1 Signal Classification; 1.2.2 Commonly Used Functions; 1.2.3 Impulse Sampling; 1.2.4 Nyquist-Shannon Sampling Theorem; 1.3 Linear Time-Invariant (LTI) Systems |
1.3.1 Definition and Properties1.3.2 Impulse Response of LTI Systems; 1.3.3 Stability Criterion: Bounded-Input Bounded-Output; 1.4 Z-Transform Analysis of Digital Linear Systems; 1.4.1 Definition and Properties; 1.4.2 Region of Convergence (ROC); 1.4.3 Poles and Zeros of a Z-Transform; 1.4.4 Inverse Z-Transform; 1.4.5 Transfer Function of an LTI System in the Z-Domain; 1.4.6 Stability Evaluation by Means of the Z-Transform; 1.5 Fourier Analysis of Digital LTI Systems; 1.5.1 Definition and Properties of the Fourier Transform; 1.5.2 Discrete-Time Fourier Transform (DTFT) |
1.5.3 Relation Between the DTFT and the Z-Transform1.5.4 Spectral |
|
|
|
|